Suppr超能文献

细菌重金属抗性:新的惊喜。

Bacterial heavy metal resistance: new surprises.

作者信息

Silver S, Phung L T

机构信息

Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago 60612, USA.

出版信息

Annu Rev Microbiol. 1996;50:753-89. doi: 10.1146/annurev.micro.50.1.753.

Abstract

Bacterial plasmids encode resistance systems for toxic metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, CO2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO3(2-), Tl+, and Zn2+. In addition to understanding of the molecular genetics and environmental roles of these resistances, studies during the last few years have provided surprises and new biochemical mechanisms. Chromosomal determinants of toxic metal resistances are known, and the distinction between plasmid resistances and those from chromosomal genes has blurred, because for some metals (notably mercury and arsenic), the plasmid and chromosomal determinants are basically the same. Other systems, such as copper transport ATPases and metallothionein cation-binding proteins, are only known from chromosomal genes. The largest group of metal resistance systems function by energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The CadA cadmium resistance ATPase of gram-positive bacteria and the CopB copper efflux system of Enterococcus hirae are homologous to P-type ATPases of animals and plants. The CadA ATPase protein has been labeled with 32P from gamma-32P-ATP and drives ATP-dependent Cd2+ uptake by inside-out membrane vesicles. Recently isolated genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to the bacterial CadA and CopB ATPases than to eukaryote ATPases that pump different cations. The arsenic resistance efflux system transports arsenite, using alternatively either a two-component (ArsA and ArsB) ATPase or a single polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As (V)] to arsenite [As (III)], the substrate of the efflux system. The three-component Czc (Cd2+, Zn2+, and CO2+) chemiosmotic efflux pump of soil microbes consists of inner membrane (CzcA), outer membrane (CzcC), and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell. Finally, the first bacterial metallothionein (which by definition is a small protein that binds metal cations by means of numerous cysteine thiolates) has been characterized in cyanobacteria.

摘要

细菌质粒编码针对包括Ag+、AsO2-、AsO4(3-)、Cd2+、CO2+、CrO4(2-)、Cu2+、Hg2+、Ni2+、Pb2+、Sb3+、TeO3(2-)、Tl+和Zn2+等有毒金属离子的抗性系统。除了了解这些抗性的分子遗传学和环境作用外,过去几年的研究还带来了惊喜和新的生化机制。有毒金属抗性的染色体决定因素是已知的,质粒抗性与染色体基因抗性之间的区别已经模糊,因为对于某些金属(特别是汞和砷),质粒和染色体决定因素基本相同。其他系统,如铜转运ATP酶和金属硫蛋白阳离子结合蛋白,仅从染色体基因中得知。最大的一组金属抗性系统通过依赖能量的有毒离子外排起作用。一些外排系统是ATP酶,其他是化学渗透阳离子/质子反向转运体。革兰氏阳性菌的CadA镉抗性ATP酶和平肠球菌的CopB铜外排系统与动植物的P型ATP酶同源。CadA ATP酶蛋白已用来自γ-32P-ATP的32P标记,并驱动由内向外的膜囊泡进行依赖ATP的Cd2+摄取。最近在人类铜代谢遗传性疾病门克斯综合征和威尔逊病中分离出的缺陷基因,编码的P型ATP酶与细菌CadA和CopB ATP酶的相似性高于与泵出不同阳离子的真核生物ATP酶的相似性。砷抗性外排系统运输亚砷酸盐,可交替使用双组分(ArsA和ArsB)ATP酶或作为化学渗透转运体的单多肽(ArsB)。砷抗性系统中的第三个基因arsC编码一种将细胞内砷酸盐[As(V)]转化为亚砷酸盐[As(III)]的酶,亚砷酸盐是外排系统的底物。土壤微生物的三组分Czc(Cd2+、Zn2+和CO2+)化学渗透外排泵由内膜(CzcA)、外膜(CzcC)和跨膜(CzcB)蛋白组成,它们共同将阳离子从细胞质穿过周质空间运输到细胞外。最后,第一个细菌金属硫蛋白(根据定义,它是一种通过众多半胱氨酸硫醇盐结合金属阳离子的小蛋白)已在蓝细菌中得到表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验