Silver Simon, Phung Le T
Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA.
J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):587-605. doi: 10.1007/s10295-005-0019-6. Epub 2005 Oct 12.
Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.
基本上所有细菌都拥有抗有毒金属离子的基因,这些基因包括针对Ag+、AsO2-、AsO4(3-)、Cd2+、Co2+、CrO4(2-)、Cu2+、Hg2+、Ni2+、Pb2+、TeO3(2-)、Tl+和Zn2+的基因。最大的一类抗性系统通过依赖能量的有毒离子外排发挥作用。较少的抗性系统涉及酶促转化(氧化、还原、甲基化和去甲基化)或金属结合蛋白(例如金属硫蛋白SmtA、伴侣蛋白CopZ和周质银结合蛋白SilE)。一些外排抗性系统是ATP酶,其他的是化学渗透离子/质子交换器。例如,细菌的Cd2+外排泵要么是内膜P型ATP酶,要么是由内膜泵、周质桥接蛋白和外膜通道组成的三多肽RND化学渗透复合物。除了研究得最透彻的三多肽化学渗透系统Czc(Cd2+、Zn2+和Co2+)之外,还已知其他一些系统可外排Ag+、Cu+、Ni2+和Zn2+。对无机汞Hg2+(以及对有机汞,如CH3Hg+和苯基汞)的抗性涉及一系列金属结合和膜转运蛋白以及汞还原酶和有机汞裂解酶,这些酶总体上可将毒性更强的形式转化为毒性更弱的形式。砷抗性和代谢系统以三种模式出现,一种是在大多数细菌基因组和许多质粒中广泛存在的ars操纵子,一种是最近发现的用于周质砷酸盐还原酶的arr基因,该酶在厌氧呼吸中作为末端电子受体发挥作用,还有一种是用于周质亚砷酸盐氧化酶的aso基因,该酶在对亚砷酸盐的好氧抗性中作为初始电子供体发挥作用。