Suppr超能文献

Flowable networks as DNA sequencing media in capillary columns.

作者信息

Menchen S, Johnson B, Winnik M A, Xu B

机构信息

Perkin Elmer Corporation, Applied Biosystems Division, Foster City, CA 94404, USA.

出版信息

Electrophoresis. 1996 Sep;17(9):1451-9. doi: 10.1002/elps.1150170909.

Abstract

A novel class of materials that self-assemble in water into equilibrium network structures with a well-defined mesh size consist of polyethylene glycols (PEG's) end-capped with micelle-forming fluorocarbon tails. These micellar systems form flowable aqueous gel-like networks that permit electrophoretic DNA sequencing in capillary columns. The gels have unusual rheological properties, including network breakdown under shear, resulting in plug flow that allows columns refill with complete ejection of byproducts of the previous sequencing analysis. In this system, DNA fragment electrophoretic mobilities are unaffected by the hydrophobicity of the polymer tails. Low molecular weight (M) PEG chains (M 8000) show catastrophic resolution loss for DNA fragments larger than 100 bases due to band broadening. For a longer PEG segment (M 35000) separating the end groups, band broadening occurs for DNA fragments larger than 300 bases, implying that the PEG segment length controls the mesh size in the equilibrium network structure. Optimum sequencing results were obtained from a 6% solution of a 1:1 mixture of C6F13 end-capped- and C8F17 end-capped PEG 35,000. The resolution limit of fluorescent-dye-labeled sequencing products in this formulation was 450 bases in 75 microns capillaries at 200 V/cm.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验