Suppr超能文献

Utilization of FISH in positional cloning: an example on 13q22.

作者信息

Laan M, Isosomppi J, Klockars T, Peltonen L, Palotie A

机构信息

Department of Clinical Chemistry, University of Helsinki, Finland.

出版信息

Genome Res. 1996 Oct;6(10):1002-12. doi: 10.1101/gr.6.10.1002.

Abstract

In positional cloning the initial assignment of a gene to a specific chromosomal locus is followed by physical mapping of the critical region. The construction of a high-resolution physical map still involves considerable effort. However, new high-resolution fluorescence in situ hybridization (FISH) techniques have facilitated this process substantially. Here we summarize a strategy that combines a spectrum of FISH techniques [metaphase, interphase, mechanically stretched chromosomes (MSCs), and fiber-FISH on free chromatin] for the construction and characterization of a high-resolution physical map for a positional cloning project. The chromosomal region 13q22, containing the locus of the variant form of the neuronal ceroid lipofuscinosis (vLINCL, CLN5) disease, serves here as an example for this process. We used metaphase FISH to exclude positionally a candidate gene, to refine the locus to 13q22, and to analyze the possible chimerism of the YACs in the region. Both metaphase and interphase FISH techniques were applied to determine the low-resolution distances between the restricting markers. FISH using MSCs confirmed the centromeric-telomeric order of the clones and facilitated the estimation of the size of the gaps between the clones. Finally, fiber-FISH was found to be the method of choice for the construction of an accurate high-resolution map of the contig established over the restricted region. Thus, FISH techniques in combination with genetic mapping data enabled the refinement of the initial 4-cM region to a high-resolution map of only 400 kb in length. Here the FISH strategy replaced the need for many laborious traditional physical mapping methods, e.g., pulsed-field gel electrophoresis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验