Gottlin E B, Xu X, Epstein D M, Burke S P, Eckstein J W, Ballou D P, Dixon J E
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
J Biol Chem. 1996 Nov 1;271(44):27445-9. doi: 10.1074/jbc.271.44.27445.
The Cdc25 cell cycle regulator is a member of the dual-specificity class of protein-tyrosine phosphatases that hydrolyze phosphotyrosine- and phosphothreonine-containing substrates. To study the mechanism of Cdc25B, we have overexpressed and purified the catalytic domain of human Cdc25B (Xu, X., and Burke, S. P. (1996) J. Biol. Chem. 271, 5118-5124). In the present work, we have analyzed the kinetic properties of the Cdc25B catalytic domain using the artificial substrate 3-O-methylfluorescein phosphate (OMFP). Steady-state kinetic analysis indicated that the kcat/Km for OMFP hydrolysis is almost 3 orders of magnitude greater than that for p-nitrophenyl phosphate hydrolysis. Like other dual-specificity phosphatases, Cdc25 exhibits a two-step catalytic mechanism, characterized by formation and breakdown of a phosphoenzyme intermediate. Pre-steady-state kinetic analysis of OMFP hydrolysis indicated that formation of the phosphoenzyme intermediate is approximately 20 times faster than subsequent phosphoenzyme breakdown. The resulting burst pattern of product formation allowed us to derive rate constants for enzyme phosphorylation (26 s-1) and dephosphorylation (1.5 s-1) as well as the dissociation constant for OMFP (0.3 mM). Calculations suggest that OMFP binds with higher affinity and reacts faster with Cdc25B than does p-nitrophenyl phosphate. OMFP is a highly efficient substrate for the dual-specificity protein-tyrosine phosphatases VHR and rVH6, but not for two protein-tyrosine phosphatases, PTP1 and YOP. The ability to observe distinct phases of the reaction mechanism during OMFP hydrolysis will facilitate future analysis of critical catalytic residues in Cdc25 and other dual-specificity phosphatases.
细胞周期调控因子Cdc25是双特异性蛋白酪氨酸磷酸酶家族的成员,可水解含磷酸酪氨酸和磷酸苏氨酸的底物。为了研究Cdc25B的作用机制,我们对人Cdc25B的催化结构域进行了过表达和纯化(Xu, X.,和Burke, S. P. (1996) J. Biol. Chem. 271, 5118 - 5124)。在本研究中,我们使用人工底物3 - O - 甲基荧光素磷酸酯(OMFP)分析了Cdc25B催化结构域的动力学特性。稳态动力学分析表明,OMFP水解的kcat/Km比对硝基苯磷酸酯水解的kcat/Km大近3个数量级。与其他双特异性磷酸酶一样,Cdc25表现出两步催化机制,其特征是磷酸化酶中间体的形成和分解。OMFP水解的稳态前动力学分析表明,磷酸化酶中间体的形成比随后的磷酸化酶分解快约20倍。由此产生的产物形成爆发模式使我们能够得出酶磷酸化(26 s-1)和解磷酸化(1.5 s-1)的速率常数以及OMFP的解离常数(0.3 mM)。计算表明,OMFP与Cdc25B的结合亲和力更高,反应速度比硝基苯磷酸酯更快。OMFP是双特异性蛋白酪氨酸磷酸酶VHR和rVH6的高效底物,但不是两种蛋白酪氨酸磷酸酶PTP1和YOP的底物。在OMFP水解过程中观察到反应机制不同阶段的能力将有助于未来对Cdc25和其他双特异性磷酸酶中关键催化残基的分析。