Suppr超能文献

Redox-linked ionization of sulredoxin, an archaeal Rieske-type [2Fe-2S] protein from Sulfolobus sp. strain 7.

作者信息

Iwasaki T, Imai T, Urushiyama A, Oshima T

机构信息

Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Yokohama 226.

出版信息

J Biol Chem. 1996 Nov 1;271(44):27659-63. doi: 10.1074/jbc.271.44.27659.

Abstract

"Sulredoxin" of Sulfolobus sp. strain 7 is an archaeal soluble Rieske-type [2Fe-2S] protein and was initially characterized by several spectroscopic techniques (Iwasaki, T., Isogai, T., Iizuka, T. , and Oshima, T. (1995) J. Bacteriol. 177, 2576-2582). It appears to have tightly linked ionization affecting the redox properties of the protein, which is characteristic of the Rieske FeS proteins found as part of the respiratory chain. Sulredoxin had an Em(low pH) value of +188 +/- 9 mV, and the slope of pH dependence of the midpoint redox potential indicated two ionization equilibria in the oxidized form with pKa(ox1) of 6.23 +/- 0.22 and pKa(ox2) of 8.57 +/- 0.20. The absorption, CD, and resonance Raman spectra of oxidized sulredoxin are consistent with the proposed St2FeSb2Fe[N(His)]t2 core structure, and deprotonation of one of the two putative coordinated histidine imidazoles, having the pKa(ox2) of 8.57 +/- 0.20, causes a decrease in the midpoint redox potential, the change in the optical and CD spectra, and the appearance of a new Raman transition at 278 cm-1, without major structural rearrangement of the [2Fe-2S] cluster as well as the overall protein conformation. The redox-linked ionization of sulredoxin is also contributed by local changes involving another ionizable group having the pKa(ox1) of 6.23 +/- 0. 22, which is probably attributed to a certain positively charged amino acid residue that may not be a ligand by itself but located very close to the cluster. We suggest that sulredoxin provides a new tractable model of the membrane-bound homologue of the respiratory chain, the Rieske FeS proteins of the cytochrome bc1-b6f complexes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验