McCallum C D, Hapak R C, Neuenschwander P F, Morrissey J H, Johnson A E
Department of Medical Biochemistry & Genetics, Texas A&M University Health Science Center, College Station, Texas 77843-1114, USA.
J Biol Chem. 1996 Nov 8;271(45):28168-75. doi: 10.1074/jbc.271.45.28168.
The topography of membrane-bound blood coagulation factor VIIa (fVIIa) was examined by positioning a fluorescein dye in the active site of fVIIa via a tripeptide tether to yield fluorescein-D-phenylalanyl-L-prolyl-L-arginyl-fVIIa (Fl-FPR-fVIIa). The location of the active-site probe relative to the membrane surface was determined, both in the presence and absence of tissue factor (TF), using fluorescence energy transfer between the fluorescein dye and octadecylrhodamine (OR) at the phospholipid vesicle surface. When Fl-FPR-fVIIa was titrated with phospholipid vesicles containing OR, the magnitude of OR-, calcium ion-, and phosphatidylserine-dependent fluorescence energy transfer revealed that the average distance of closest approach between fluorescein in the active site of fVIIa and OR at the vesicle surface is 82 A assuming a random orientation of donor and acceptor dyes (kappa2 = 2/3; the orientational uncertainty totals approximately 10%). The active site of fVIIa is therefore located far above the membrane surface, and the elongated fVIIa molecule must bind at one end to the membrane and project approximately perpendicularly out of the membrane. When Fl-FPR-fVIIa was titrated with vesicles that contained TF, the efficiency of energy transfer was increased by a TF-dependent translational and/or rotational movement of the fVIIa protease domain relative to the membrane surface. If this movement was solely translational, the height of the active site of fVIIa was lowered by an average of 6 A after binding to TF. The association of fVIIa with TF on the membrane surface therefore causes a significant reorientation of the active site relative to the membrane surface. This cofactor-dependent realignment of the active-site groove presumably facilitates and optimizes fVIIa cleavage of its membrane-bound substrates.
通过经由三肽连接体将荧光素染料定位在凝血因子VIIa(fVIIa)的活性位点,以产生荧光素-D-苯丙氨酰-L-脯氨酰-L-精氨酰-fVIIa(Fl-FPR-fVIIa),从而检测膜结合型fVIIa的拓扑结构。在存在和不存在组织因子(TF)的情况下,利用荧光素染料与磷脂囊泡表面的十八烷基罗丹明(OR)之间的荧光能量转移,确定活性位点探针相对于膜表面的位置。当用含有OR的磷脂囊泡滴定Fl-FPR-fVIIa时,OR、钙离子和磷脂酰丝氨酸依赖性荧光能量转移的幅度表明,假设供体和受体染料随机取向(κ2 = 2/3;取向不确定性总计约10%),fVIIa活性位点中的荧光素与囊泡表面的OR之间最接近的平均距离为82埃。因此,fVIIa的活性位点位于膜表面上方很远的位置,并且细长的fVIIa分子必须一端结合到膜上并大致垂直于膜伸出。当用含有TF的囊泡滴定Fl-FPR-fVIIa时,fVIIa蛋白酶结构域相对于膜表面的TF依赖性平移和/或旋转运动会提高能量转移效率。如果这种运动仅是平移运动,那么fVIIa与TF结合后,其活性位点的高度平均降低6埃。因此,fVIIa与膜表面上的TF结合会导致活性位点相对于膜表面发生显著的重新定向。活性位点凹槽的这种辅因子依赖性重新排列大概有助于并优化fVIIa对其膜结合底物的切割。