Hofer G, Grimmer C, Sukhatme V P, Sterzel R B, Rupprecht H D
Medizinische Klinik IV der Universität Erlangen-Nürnberg, Nephrologische Forschungslabors, Loschgestrasse 8, 91054 Erlangen, Germany.
J Biol Chem. 1996 Nov 8;271(45):28306-10. doi: 10.1074/jbc.271.45.28306.
Increase of glomerular mesangial cells (MCs) is a prominent histopathological finding in many types of glomerulonephritis. We have shown previously that expression of the zinc-finger transcription factor, early growth response gene-1 (egr-1), is closely correlated with the proliferation of cultured MCs. To elucidate whether Egr-1 is required for MC proliferation, we inhibited serum-induced Egr-1 expression by phosphothioate-modified antisense oligonucleotides (ODNs). Uptake of antisense ODNs into MCs was demonstrated, and five different egr-1 antisense ODNs were tested for their impact on serum-induced egr-1 mRNA and protein levels and on MC growth. The most potent egr-1 antisense ODN inhibited serum-induced egr-1 mRNA by 68%, protein induction by 58%, and MC replication as measured by [3H]thymidine uptake and cell counts by 78 and 46%, respectively. The effects of antisense ODNs on MC growth correlated closely with their ability to inhibit Egr-1 protein. ODNs acted in a dose-dependent manner, the minimal effective concentration being 1 microM. Control ODNs had no significant effects. In addition, antisense ODNs against egr-1 potently inhibited endothelin-1-induced Egr-1 expression and MC growth. Heparin, a known inhibitor of MC growth, suppressed serum-induced [3H]thymidine uptake by 39% and egr-1 mRNA expression by 44%. We conclude that Egr-1 is an essential part of the mitogenic signal transduction cascade in cultured MCs.