Tolbert L P, Sun X J, Hildebrand J G
Arizona Research Laboratories Division of Neurobiology, The University of Arizona, Tucson 85721, USA.
J Neurosci Methods. 1996 Oct 21;69(1):25-32. doi: 10.1016/S0165-0270(96)00017-9.
Experimentally determining the synaptic interconnections between neurons in the nervous system is laborious and difficult in any animal species, but especially so in many invertebrates, including insects, where neurons generally have large, finely branching neuritic trees that form both pre- and postsynaptic specializations in dense neuropils with other neuritic trees. Electron microscopy is needed to identify synapses, but correlation of synapse type and location with the overall branching patterns of neurons, which are visible readily only in the light microscope or through extensive reconstruction of serial electron-microscope sections, is very difficult. In this paper, we present a simple method that we have developed (Sun et al. (1995) J. Histochem. Cytochem., 43: 329-335) that combines laser scanning confocal microscopy and electron microscopy for the study of synaptic relationships of neurons in the antennal lobe, the first central neuropil in the olfactory pathway, of the moth Manduca sexta. Briefly, neurons are labeled by intracellular injection with neurobiotin or biocytin, and then processed with a gold-particle tag for electron microscopic study and a fluorescent tag for confocal microscopy, and embedded in plastic. The fluorescence of the labeled neuron in the plastic blocks is imaged in three dimensions with laser scanning confocal microscopy and then the neuron is thin-sectioned at precisely chosen depths for electron microscopic study. The fluorescence pattern can be monitored repeatedly between episodes of thin-sectioning, and subtraction of a fluorescence image from the previous fluorescence image reveals which fluorescent processes have been sectioned. In this way, electron microscopic detail can be mapped onto a three-dimensional light microscopic image of the neuron.
通过实验确定神经系统中神经元之间的突触连接,对于任何动物物种来说都是一项艰巨且困难的任务,而在许多无脊椎动物中,尤其是昆虫,难度更是如此。在昆虫中,神经元通常具有大型、分支精细的神经树突,这些神经树突在密集的神经纤维网中与其他神经树突形成突触前和突触后的特化结构。识别突触需要电子显微镜,但要将突触类型和位置与神经元的整体分支模式相关联却非常困难,因为神经元的整体分支模式只有在光学显微镜下或通过对连续电子显微镜切片进行广泛重建才能清晰看到。在本文中,我们展示了一种我们开发的简单方法(Sun等人,(1995年)《组织化学与细胞化学杂志》,43卷:329 - 335页),该方法结合了激光扫描共聚焦显微镜和电子显微镜,用于研究烟草天蛾触角叶(嗅觉通路中的第一个中枢神经纤维网)中神经元的突触关系。简而言之,通过细胞内注射神经生物素或生物胞素对神经元进行标记,然后用金颗粒标记物进行电子显微镜研究处理,用荧光标记物进行共聚焦显微镜研究处理,并嵌入塑料中。用激光扫描共聚焦显微镜对塑料块中标记神经元的荧光进行三维成像,然后在精确选择的深度对神经元进行超薄切片以进行电子显微镜研究。在超薄切片过程中,可以反复监测荧光模式,通过从先前的荧光图像中减去当前的荧光图像,可以揭示哪些荧光过程已被切片。通过这种方式,可以将电子显微镜的细节映射到神经元的三维光学显微镜图像上。