Suppr超能文献

在蛋白质二级结构预测及其他比较序列分析中使用进化树。

Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses.

作者信息

Goldman N, Thorne J L, Jones D T

机构信息

Department of Genetics, University of Cambridge, UK.

出版信息

J Mol Biol. 1996 Oct 25;263(2):196-208. doi: 10.1006/jmbi.1996.0569.

Abstract

Previously proposed methods for protein secondary structure prediction from multiple sequence alignments do not efficiently extract the evolutionary information that these alignments contain. The predictions of these methods are less accurate than they could be, because of their failure to consider explicitly the phylogenetic tree that relates aligned protein sequences. As an alternative, we present a hidden Markov model approach to secondary structure prediction that more fully uses the evolutionary information contained in protein sequence alignments. A representative example is presented, and three experiments are performed that illustrate how the appropriate representation of evolutionary relatedness can improve inferences. We explain why similar improvement can be expected in other secondary structure prediction methods and indeed any comparative sequence analysis method.

摘要

先前提出的从多序列比对预测蛋白质二级结构的方法,无法有效提取这些比对中所包含的进化信息。由于未能明确考虑与比对后的蛋白质序列相关的系统发育树,这些方法的预测准确性未能达到应有的水平。作为一种替代方法,我们提出了一种用于二级结构预测的隐马尔可夫模型方法,该方法能更充分地利用蛋白质序列比对中包含的进化信息。文中给出了一个具有代表性的例子,并进行了三个实验,这些实验说明了进化相关性的适当表示方式如何能够改进推理。我们解释了为什么在其他二级结构预测方法以及实际上任何比较序列分析方法中都有望实现类似的改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验