Suppr超能文献

A beta-adrenoceptor agonist evokes a nitric oxide-cGMP relaxation mechanism modulated by adenylyl cyclase in rat aorta. Halothane does not inhibit this mechanism.

作者信息

Iranami H, Hatano Y, Tsukiyama Y, Maeda H, Mizumoto K

机构信息

Department of Anesthesia, Wakayama Medical College, Japan.

出版信息

Anesthesiology. 1996 Nov;85(5):1129-38. doi: 10.1097/00000542-199611000-00022.

Abstract

BACKGROUND

The objective of this study was to characterize the effects of halothane on the agonist-induced nitric oxide-cyclic GMP (NO-cGMP) mechanisms by comparing the intracellular signal transduction mediating isoproterenol- and acetylcholine-induced nitric oxide formation.

METHODS

Isoproterenol-induced relaxations of rat aortic rings with and without endothelia were examined in the absence and presence of halothane. Studies were also done in the presence of inhibitors of nitric oxide-synthase, adenylyl cyclase, calmodulin, protein kinase A, and intracellular Ca2+ release mechanism. The relaxations under some of these conditions were compared with those induced by acetylcholine. Cyclic nucleotide contents of the rings were also measured.

RESULTS

Isoproterenol relaxed aortic rings via the endothelium-dependent nitric oxide-cyclic GMP mechanism. Inhibition of adenylyl cyclase or of protein kinase A attenuated the isoproterenol-induced relaxations significantly but did not affect those induced by acetylcholine. Inhibition of intracellular Ca2+ release abolished the acetylcholine-induced relaxations but did not affect those induced by isoproterenol. Calmodulin inhibition attenuated both agonist-induced relaxations significantly. Unlike acetylcholine-induced relaxation, that induced by isoproterenol was not affected by halothane. Isoproterenol increased both the cyclic adenosine monophosphate and cGMP contents of rings significantly when endothelia were intact. Inhibition of nitric oxide synthase attenuated the isoproterenol-induced cGMP content increases significantly but did not affect the cyclic adenosine monophosphate content increases. Halothane (2%) did not affect isoproterenol-induced increases in nucleotide content.

CONCLUSIONS

Isoproterenol-induced nitric oxide formation requires the activation of constitutive nitric oxide synthase, but the Ca2+ release mechanism is not involved in activating this enzyme. Halothane can inhibit the nitric oxide-cyclic GMP mechanism only when Ca2+ release is greatly involved in the activation of constitutive nitric oxide synthase.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验