Suppr超能文献

The Cys292-->Ala substitution in protein R1 of class I ribonucleotide reductase from Escherichia coli has a global effect on nucleotide binding at the specificity-determining allosteric site.

作者信息

Ormö M, Sjöberg B M

机构信息

Department of Molecular Biology, Stockholm University, Sweden.

出版信息

Eur J Biochem. 1996 Oct 15;241(2):363-7. doi: 10.1111/j.1432-1033.1996.00363.x.

Abstract

Ribonucleotide reductase from aerobically grown Escherichia coli is allosterically regulated, both with respect to general activity and substrate specificity. Protein R1, the homodimeric enzyme component which harbours binding sites for allosteric effectors (nucleoside triphosphates) as well as substrates (ribonucleoside diphosphates), has been engineered at Cys292 close to the dimer interaction area. This residue was earlier shown to be specifically photoaffinity labelled with the allosteric nucleotide dTTP. In this study the effect of the Cys292-->Ala substitution is shown to be an overall diminished nucleotide binding at the specificity site reflected in Kd values for dTTP, dGTP and dATP higher by more than one order of magnitude with respect to wild type. The mutant protein's interaction with other protein components of the ribonucleotide reductase system was unaffected by the mutation. These results show that Cys292 in protein R1 of class I ribonucleotide reductase from E. coli is located in the allosteric specificity site.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验