Suppr超能文献

藻类丹麦赭球藻对酚类的生物降解作用

Biodegradation of phenols by the alga Ochromonas danica.

作者信息

Semple K T, Cain R B

机构信息

Department of Biological and Nutritional Sciences, The University, Newcastle upon Tyne, United Kingdom.

出版信息

Appl Environ Microbiol. 1996 Apr;62(4):1265-73. doi: 10.1128/aem.62.4.1265-1273.1996.

Abstract

The eukaryotic alga Ochromonas danica, a nutritionally versatile, mixotrophic chrysophyte, grew on phenol as the sole carbon source in axenic culture and removed the phenol carbon from the growth medium. Respirometric studies confirmed that the enzymes involved in phenol catabolism were inducible and that the alga oxidized phenol; the amount of oxygen consumed per mole of oxidized substrate was approximately 65% of the theoretical value. [U-14C]phenol was completely mineralized, with 65% of the 14C label appearing as 14CO2, approximately 15% remaining in the aqueous medium, and the rest accounted for in the biomass. Analysis of the biomass showed that 14C label had been incorporated into the protein, nucleic acid, and lipid fractions; phenol carbon is thus unequivocally assimilated by the alga. Phenol-grown cultures of O. danica converted phenols to the corresponding catechols, which were further metabolized by the meta-cleavage pathway. This surprising result was rigorously confirmed by taking the working stock culture through a variety of procedures to check that it was axenic and repeating the experiments with algal extracts. This is, as far as is known, the first definitive identification of the meta-cleavage pathway for aromatic ring degradation in a eukaryotic alga, though its incidence in other eukaryotes has been (infrequently) suggested.

摘要

真核藻类丹麦赭球藻是一种营养方式多样的兼养型金藻,在无菌培养中能以苯酚作为唯一碳源生长,并从生长培养基中去除苯酚碳。呼吸测定研究证实,参与苯酚分解代谢的酶是可诱导的,且该藻类能氧化苯酚;每摩尔氧化底物消耗的氧量约为理论值的65%。[U-14C]苯酚完全矿化,14C标记的65%以14CO2形式出现,约15%留在水相中,其余存在于生物量中。对生物量的分析表明,14C标记已掺入蛋白质、核酸和脂质部分;因此,苯酚碳被该藻类明确同化。在以苯酚培养的丹麦赭球藻培养物中,苯酚被转化为相应的儿茶酚,儿茶酚再通过间位裂解途径进一步代谢。通过对工作储备培养物进行各种程序检查其无菌性,并使用藻类提取物重复实验,这一惊人结果得到了严格证实。据所知,这是首次在真核藻类中明确鉴定出芳香环降解的间位裂解途径,尽管之前曾(很少)有人提出它在其他真核生物中也存在。

相似文献

1
Biodegradation of phenols by the alga Ochromonas danica.
Appl Environ Microbiol. 1996 Apr;62(4):1265-73. doi: 10.1128/aem.62.4.1265-1273.1996.
2
Heterotrophic growth on phenolic mixtures by Ochromonas danica.
Res Microbiol. 1998 Jan;149(1):65-72. doi: 10.1016/s0923-2508(97)83625-x.
3
Metabolism of phenols by Ochromonas danica.
FEMS Microbiol Lett. 1995 Nov 15;133(3):253-7. doi: 10.1111/j.1574-6968.1995.tb07893.x.
4
Biodegradation of phenols by a eukaryotic alga.
Res Microbiol. 1997 May;148(4):365-7. doi: 10.1016/S0923-2508(97)81592-6.
8
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
Appl Microbiol Biotechnol. 1992 May;37(2):252-9. doi: 10.1007/BF00178180.
10
Application of a chemically modified green macro alga as a biosorbent for phenol removal.
J Environ Manage. 2009 Apr;90(5):1877-83. doi: 10.1016/j.jenvman.2008.12.005. Epub 2009 Jan 11.

引用本文的文献

1
Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study.
Plants (Basel). 2021 Dec 6;10(12):2677. doi: 10.3390/plants10122677.
2
Molecular Identification and Characterization of sp. NIGAB-1 for Phenol Degradation Under Saline Conditions.
Iran J Biotechnol. 2020 Jan 1;18(1):e2275. doi: 10.30498/IJB.2020.133622.2275. eCollection 2020 Jan.
4
Microalgae cultivation for phenolic compounds removal.
Environ Sci Pollut Res Int. 2018 Dec;25(34):33936-33956. doi: 10.1007/s11356-018-3450-8. Epub 2018 Oct 23.
5
6
Effect of nutrients on Chlorella pyrenoidosa for treatment of phenolic effluent of coal gasification plant.
Environ Sci Pollut Res Int. 2017 May;24(15):13594-13603. doi: 10.1007/s11356-017-8891-y. Epub 2017 Apr 8.
7
8
Metabolism of xenobiotics by Chlamydomonas reinhardtii: Phenol degradation under conditions affecting photosynthesis.
Photosynth Res. 2017 Jan;131(1):31-40. doi: 10.1007/s11120-016-0294-2. Epub 2016 Jul 15.
10
Stress response of Chlorella pyrenoidosa to nitro-aromatic compounds.
Environ Sci Pollut Res Int. 2015 Mar;22(5):3784-93. doi: 10.1007/s11356-014-3582-4. Epub 2014 Oct 1.

本文引用的文献

1
Nomograms for manometer constants.
Biochem J. 1945;39(5):427-34. doi: 10.1042/bj0390427.
2
Metabolism of p-Cresol by the Fungus Aspergillus fumigatus.
Appl Environ Microbiol. 1993 Apr;59(4):1125-30. doi: 10.1128/aem.59.4.1125-1130.1993.
3
Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by pseudomonas strains.
Appl Environ Microbiol. 1991 May;57(5):1430-40. doi: 10.1128/aem.57.5.1430-1440.1991.
4
Metabolism of Dibenzofuran by Pseudomonas sp. Strain HH69 and the Mixed Culture HH27.
Appl Environ Microbiol. 1990 Apr;56(4):1148-56. doi: 10.1128/aem.56.4.1148-1156.1990.
5
Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols.
Appl Environ Microbiol. 1984 Mar;47(3):500-5. doi: 10.1128/aem.47.3.500-505.1984.
6
Degradation of azo dyes by algae.
Environ Pollut. 1992;75(3):273-8. doi: 10.1016/0269-7491(92)90127-v.
7
A new metabolic pathway of catechol.
J Biol Chem. 1962 Jan;237:PC268-PC270.
8
THE BACTERIAL DEGRADATION OF CATECHOL.
Biochem J. 1965 May;95(2):466-74. doi: 10.1042/bj0950466.
9
Soil extract in soil microbiology.
Can J Microbiol. 1958 Aug;4(4):363-70. doi: 10.1139/m58-038.
10
Nutrition of some phagotrophic freshwater chrysomonads.
Ann N Y Acad Sci. 1953 Oct 14;56(5):852-62. doi: 10.1111/j.1749-6632.1953.tb30263.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验