Gao W D, Liu Y, Marban E
Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md 21205, USA.
Circulation. 1996 Nov 15;94(10):2597-604. doi: 10.1161/01.cir.94.10.2597.
Oxygen free radicals (OFRs) have been implicated in the pathogenesis of myocardial stunning, but the precise mechanism by which OFRs foster stunning remains unclear. We investigated the pathophysiology of the contractile dysfunction that occurs after direct exposure of OFRs to cardiac muscle and compared the results with the pathophysiology of stunned myocardium.
Trabeculae from the right ventricles of rat hearts were loaded iontophoretically with fura-2 to determine [Ca2+]i. Steady-state force-[Ca2+]i relations were obtained by rapid electrical stimulation in the presence of ryanodine. Two exogenous OFR-generating systems were used: H2O2 + Fe(3+)-nitrilotriacetic acid (H2O2 + Fe3+) to produce hydroxyl radical, and xanthine oxidase+purine (XO + P) to produce superoxide. In muscles exposed to H2O2 + Fe3+ for 10 minutes, both twitch force and Ca2+ transients were decreased (eg, in 1.5 mmol/L external [Ca2+], force decreased from 41 +/- 7 to 23 +/- 4 mN/mm2, P < .05, and Ca2+ transient amplitude from 0.96 +/- 0.09 to 0.70 +/- 0.05 mumol/L, P < .05). Maximal Ca(2+)-activated force (Fmax) decreased slightly, from 103 +/- 5 to 80 +/- 12 mN/mm2 (P = NS). Neither the [Ca2+]i required to achieve 50% of Fmax (Ca50) nor the Hill coefficient was changed. In muscles exposed to XO + P for 20 minutes, twitch force was reduced (in 1.5 mmol/L external [Ca2+]) from 50 +/- 9 to 39 +/- 8 mN/mm2 (P < .05). Ca2+ transients, on the other hand, were not affected. Fmax decreased insignificantly from 100 +/- 16 to 81 +/- 14 mN/mm2. Ca50 increased from 0.71 +/- 0.06 to 1.07 +/- 0.07 mumol/L (P < .05), with no change in the Hill coefficient.
These results indicate that exposure to the H2O2 + Fe3+ free radical-generating system reduces activator Ca2+ availability, whereas XO + P decreases the Ca2+ sensitivity of the myofilaments. Exogenously generated OFRs, particularly those produced by XO + P, mimic the effects of myocardial stunning on cardiac excitation-contraction coupling.
氧自由基(OFRs)与心肌顿抑的发病机制有关,但OFRs促进顿抑的确切机制尚不清楚。我们研究了OFRs直接作用于心肌后发生的收缩功能障碍的病理生理学,并将结果与顿抑心肌的病理生理学进行了比较。
用fura-2通过离子导入法加载大鼠右心室小梁来测定细胞内钙离子浓度([Ca2+]i)。在存在ryanodine的情况下,通过快速电刺激获得稳态力-[Ca2+]i关系。使用了两种外源性OFR生成系统:过氧化氢+铁(III)-次氮基三乙酸(H2O2 + Fe3+)以产生羟基自由基,以及黄嘌呤氧化酶+嘌呤(XO + P)以产生超氧阴离子。在暴露于H2O2 + Fe3+ 10分钟的肌肉中,收缩力和Ca2+瞬变均降低(例如,在细胞外[Ca2+]为1.5 mmol/L时,力从41±7降至23±4 mN/mm2,P <.05,Ca2+瞬变幅度从0.96±0.09降至0.70±0.05 μmol/L,P <.05)。最大Ca2+激活力(Fmax)略有下降,从103±5降至80±12 mN/mm2(P =无显著性差异)。达到Fmax的50%所需的[Ca2+]i(Ca50)和希尔系数均未改变。在暴露于XO + P 20分钟的肌肉中,收缩力降低(在细胞外[Ca2+]为1.5 mmol/L时),从50±9降至39±8 mN/mm2(P <.05)。另一方面,Ca2+瞬变未受影响。Fmax从100±16降至81±14 mN/mm2,无显著变化。Ca50从0.71±0.06增加至1.07±0.07 μmol/L(P <.05),希尔系数无变化。
这些结果表明,暴露于H2O2 + Fe3+自由基生成系统会降低激活剂Ca2+的可用性,而XO + P会降低肌丝对Ca2+的敏感性。外源性产生的OFRs,尤其是由XO + P产生的OFRs,模拟了心肌顿抑对心脏兴奋-收缩偶联的影响。