Suppr超能文献

血管紧张素II受体参与自发性高血压大鼠尾动脉去甲肾上腺素能传递的增强。

Angiotensin II receptors involved in the enhancement of noradrenergic transmission in the caudal artery of the spontaneously hypertensive rat.

作者信息

Cox S L, Story D F, Ziogas J

机构信息

Department of Medical Laboratory Science, RMIT, Melbourne, Australia.

出版信息

Br J Pharmacol. 1996 Nov;119(5):965-75. doi: 10.1111/j.1476-5381.1996.tb15766.x.

Abstract
  1. The effects of the AT1 receptor antagonist losartan and the AT2 receptor antagonist PD 123319, on actions of angiotensin II in isolated caudal arteries of spontaneously hypertensive (SH) and age-matched normotensive (Wistar-Kyoto) rats were compared. 2. Angiotensin II (0.1-3 microM) produced concentration-dependent increases in perfusion pressure in artery preparations from both SH and Wistar-Kyoto (WKY) rats, the maximal increase in the SH rat being significantly greater than the increase in WKY rats. The increase in perfusion pressure in preparations from both strains of rats was prevented by losartan (0.1 microM) and unaffected by PD 123319 (0.1 microM), indicating that the vasoconstrictor action of angiotensin II is subserved by AT1 receptors. 3. Angiotensin II (0.1-3 microM) produced concentration-dependent enhancement of both stimulation-induced (S-I) efflux of [3H]-noradrenaline and stimulation-evoked vasoconstrictor responses in isolated preparations of caudal artery from both SH and WKY rats, in which the noradrenergic transmitter stores had been labelled with [3H]-noradrenaline. The maximum enhancement of S-I efflux produced by angiotensin II (1 microM) was significantly greater in artery preparations from WKY rats than in preparations from SH rats, whereas the maximum enhancement of stimulation-evoked vasoconstrictor responses was greater in preparations from SH rats than in those from WKY rats. 4. In artery preparations from both WKY and SH rats, the AT1 angiotensin II receptor antagonist, losartan (0.01 and 0.1 microM), reduced or abolished the enhancement of both S-I efflux and vasoconstrictor responses by 1 microM angiotensin II. 5. The combination of 0.01 microM losartan and 0.1 microM angiotensin II enhanced both the S-I efflux and stimulation-evoked vasoconstrictor response in caudal artery preparations from WKY rats, whereas 0.1 microM angiotensin alone was ineffective. The AT2 receptor antagonist PD 123319 (0.01 and 0.1 microM) prevented the enhancement of both S-I efflux and stimulation-evoked vasoconstrictor responses by the combination of angiotensin II and losartan. 6. In contrast to findings in WKY preparations and those previously obtained for arteries from another normotensive strain (Sprague-Dawley), in artery preparations from SH rats there was no synergistic interaction between losartan and angiotensin II. Rather, combinations of 0.1 microM angiotensin II and PD 123319 (both 0.01 and 0.1 microM) enhanced S-I [3H]-noradrenaline efflux, whereas 0.1 microM angiotensin II alone was without effect. Moreover, losartan (0.1 microM) prevented the enhancement of S-I efflux by the combination of angiotensin II and PD 123319. 7. The present findings indicate that in the caudal artery of WKY and SH rats, and as previously found in Sprague-Dawley preparations, angiotensin II receptors similar to the AT1B subtype subserve enhancement of transmitter noradrenaline release. 8. As previously suggested for Sprague-Dawley caudal artery preparations, the synergistic prejunctional interaction of losartan and 0.1 microM angiotensin II in caudal artery preparations from WKY rats may be due to either the unmasking by losartan of a latent population of angiotensin II receptors subserving facilitation of transmitter noradrenaline release, or blockade by losartan of an inhibitory action of angiotensin II on transmitter release. 9. The synergistic interaction of PD 123319 and 0.1 microM angiotensin II in caudal arteries of SH rats may also be explained by either of the mechanisms proposed for the normotensive strains, but the involvement of different receptor subtypes would need to be postulated for each of the proposed mechanisms.
摘要
  1. 比较了AT1受体拮抗剂氯沙坦和AT2受体拮抗剂PD 123319对自发性高血压(SH)大鼠和年龄匹配的正常血压(Wistar-Kyoto)大鼠离体尾动脉中血管紧张素II作用的影响。2. 血管紧张素II(0.1 - 3微摩尔)使SH大鼠和Wistar-Kyoto(WKY)大鼠的动脉制剂灌注压呈浓度依赖性升高,SH大鼠的最大升高幅度显著大于WKY大鼠。氯沙坦(0.1微摩尔)可阻止两种品系大鼠制剂中灌注压的升高,而PD 123319(0.1微摩尔)对此无影响,这表明血管紧张素II的血管收缩作用由AT1受体介导。3. 血管紧张素II(0.1 - 3微摩尔)使SH大鼠和WKY大鼠离体尾动脉制剂中[3H]-去甲肾上腺素的刺激诱导(S-I)流出以及刺激诱发的血管收缩反应均呈浓度依赖性增强,其中去甲肾上腺素能递质储存已用[3H]-去甲肾上腺素标记。血管紧张素II(1微摩尔)产生的S-I流出最大增强幅度在WKY大鼠的动脉制剂中显著大于SH大鼠的制剂,而刺激诱发的血管收缩反应的最大增强幅度在SH大鼠的制剂中大于WKY大鼠的制剂。4. 在WKY和SH大鼠的动脉制剂中,AT1血管紧张素II受体拮抗剂氯沙坦(0.01和0.1微摩尔)可降低或消除1微摩尔血管紧张素II对S-I流出和血管收缩反应的增强作用。5. 0.01微摩尔氯沙坦与0.1微摩尔血管紧张素II的组合增强了WKY大鼠尾动脉制剂中的S-I流出和刺激诱发的血管收缩反应,而单独使用0.1微摩尔血管紧张素则无效。AT2受体拮抗剂PD 日123319(0.01和0.1微摩尔)可阻止血管紧张素II与氯沙坦组合对S-I流出和刺激诱发的血管收缩反应的增强作用。6. 与WKY制剂以及先前在另一种正常血压品系(Sprague-Dawley)的动脉中获得的结果相反,在SH大鼠的动脉制剂中,氯沙坦与血管紧张素II之间没有协同相互作用。相反,0.1微摩尔血管紧张素II与PD 123319(0.01和0.1微摩尔)的组合增强了S-I [3H]-去甲肾上腺素流出,而单独使用0.1微摩尔血管紧张素II则无作用。此外,氯沙坦(0.1微摩尔)可阻止血管紧张素II与PD 123319组合对S-I流出的增强作用。7. 目前的研究结果表明,在WKY和SH大鼠的尾动脉中,以及如先前在Sprague-Dawley制剂中发现的那样,类似于AT1B亚型的血管紧张素II受体介导递质去甲肾上腺素释放的增强。8. 如先前对Sprague-Dawley尾动脉制剂所建议的那样,WKY大鼠尾动脉制剂中氯沙坦与0.1微摩尔血管紧张素II的协同节前相互作用可能是由于氯沙坦揭示了一群潜在的血管紧张素II受体,这些受体有助于促进递质去甲肾上腺素释放,或者是由于氯沙坦阻断了血管紧张素II对递质释放的抑制作用。9. PD 123319与0.1微摩尔血管紧张素II在SH大鼠尾动脉中的协同相互作用也可以用为正常血压品系提出的任何一种机制来解释,但对于每种提出的机制都需要假设不同的受体亚型参与。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验