McCown T J, Duncan G E, Johnson K B, Breese G R
Department of Psychiatry, University of North Carolina at Chapel Hill 27599, USA.
Brain Res. 1995 Dec 1;701(1-2):117-28. doi: 10.1016/0006-8993(95)00970-x.
The sensory-motor portion of the inferior collicular cortex is capable of seizure genesis that is characterized initially by coincident wild running behaviors and localized electrographic afterdischarge. With repeated stimulations, this seizure activity spreads into the forebrain, producing generalized tonic-clonic or myoclonic seizure activity. In order to characterize the neural network subserving this caudal-rostral seizure generalization, three mapping techniques were used: 2-deoxyglucose (2-DG) utilization, c-fos expression and local anesthetic microinjection. Kindled seizure generalization from the inferior collicular cortex produced a global increase in 2-DG accumulation, while relative 2-DG increases were found in the inferior collicular cortex, dorsal lateral lemniscus, dorsal central gray, peripeduncular nucleus, medial geniculate nucleus, substantia nigra, entopeduncular nucleus, ventroposterior and centromedian thalamus and tenia tectum, as well as the perirhinal, somatosensory and frontal cortices. Kindled seizure generalization also increased c-fos-like immunoreactivity (FLI) in the inferior collicular cortex, cuneiform nucleus, dorsal lateral nucleus of the lateral lemniscus, peripeduncular nucleus, caudal central gray, dentate gyrus of the hippocampus, rhinal fissure area of the perirhinal cortex and the frontal cortex. Microinjections of procaine into the amygdala, perirhinal cortex, entopeduncular nucleus, substantia nigra, peripeduncular nucleus, dorsal central gray, and pontine reticular nucleus all prevented generalized seizure behaviors, but had no effect on the wild running seizures. Conversely, procaine microinjection into the area of the cuneiform nucleus/pedunculopontine tegmental nucleus prevented the wild running seizure but did not block the generalized seizure activity. Neither wild running, nor generalized seizures were altered following procaine microinjections into the anterior thalamus, sub-thalamus, lateral hypothalamus, hippocampus or deep superior colliculus. Thus, specific forebrain sites form a widespread neural network that mediates the generalization of seizure activity from the inferior collicular cortex into the forebrain.
下丘皮层的感觉运动部分能够引发癫痫发作,其最初表现为同时出现的狂奔行为和局部脑电图后放电。随着反复刺激,这种癫痫活动会扩散到前脑,产生全身性强直阵挛或肌阵挛性癫痫活动。为了表征支持这种从尾端到吻端癫痫扩散的神经网络,使用了三种映射技术:2-脱氧葡萄糖(2-DG)利用、c-fos表达和局部麻醉剂微量注射。下丘皮层引发的点燃式癫痫扩散导致2-DG积累全面增加,而下丘皮层、背侧外侧丘系、背侧中央灰质、脚周核、内侧膝状体核、黑质、内囊核、腹后和中央中丘脑以及顶盖带,以及梨状周围、体感和额叶皮层中发现2-DG相对增加。点燃式癫痫扩散还增加了下丘皮层、楔形核、外侧丘系背外侧核、脚周核、尾侧中央灰质、海马齿状回、梨状周围皮层的嗅裂区域和额叶皮层中c-fos样免疫反应性(FLI)。向杏仁核、梨状周围皮层、内囊核、黑质、脚周核、背侧中央灰质和脑桥网状核微量注射普鲁卡因均能预防全身性癫痫行为,但对狂奔性癫痫无影响。相反,向楔形核/脚桥被盖核区域微量注射普鲁卡因可预防狂奔性癫痫,但不阻断全身性癫痫活动。向前丘脑、下丘脑、外侧下丘脑、海马或上丘深部微量注射普鲁卡因后,狂奔性癫痫和全身性癫痫均未改变。因此,特定的前脑部位形成了一个广泛的神经网络,介导癫痫活动从下丘皮层扩散到前脑。