Novikov A I, Ermolenko A E, Kosyrev A B
Urol Nefrol (Mosk). 1996 May-Jun(3):26-31.
Causes underlying different results in estimation of KT/V (ur) according to 9 mathematical models are analyzed. These models are the following: 1) classic approach F.A. Gotch, 2) estimation according to E.G. Lowrei, KT/V = KT/0.6* (body mass), 3) according to R.M. Hakim, KT/V = ln(CoC), 4) according to K.K. Jindal, KT/V = 0.04*(1 - C/Co)*100% - 1.3; 5), 5) according to P. Calzavara, KT/V = (Co - C)2/(Co + C), 6) according to J.T. Daugirdas, KT/V = ln[C/Co - 0.03 - UF/(dry mass), 7) according to C. Basile, KT/V = 0.023(1- C/Co100%- 0.284, 8) according to P. Malchesky, 9) according to L. Garred et. al. Basing on the results of examination of a random sample of 120 patients on chronic dialysis it is inferred that the results obtained according to the approaches 1, 3 and 5 are more dependent on emergence of water sectors during the procedure leading to underestimation of KT/V value. In approaches 2, 8 and 9 the dialysis "dose" is estimated with minimal error. It is believed insufficient to estimate dialysis adequacy by KT/V only. It is proposed to make allowances also for the value of the ratio of true to apparent volume of urea distribution. The estimation should be made according to the formula: V/V = ln(Co/C)0.6 (body mass)/KT.
分析了根据9种数学模型估算KT/V(ur)时产生不同结果的潜在原因。这些模型如下:1)经典的F.A.戈奇方法;2)根据E.G.洛雷的估算方法,KT/V = KT/0.6×(体重);3)根据R.M.哈基姆的方法,KT/V = ln(Co/C);4)根据K.K.金达尔的方法,KT/V = 0.04×(1 - C/Co)×100% - 1.3;5)根据P.卡尔扎瓦拉的方法,KT/V = (Co - C)×2/(Co + C);6)根据J.T.道吉尔达斯的方法,KT/V = ln[C/Co - 0.03 - UF/(干体重)];7)根据C.巴西莱的方法,KT/V = 0.023(1 - C/Co×100% - 0.284);8)根据P.马尔切斯基的方法;9)根据L.加雷德等人的方法。基于对120例慢性透析患者随机样本的检查结果推断,根据方法1、3和5获得的结果更依赖于操作过程中水分区域的出现,导致KT/V值被低估。在方法2、8和9中,透析“剂量”的估算误差最小。仅通过KT/V来估算透析充分性被认为是不够的。建议同时考虑尿素分布的真实体积与表观体积之比的值。应根据公式:V/V = ln(Co/C)×0.6×(体重)/KT进行估算。