Suppr超能文献

Ionic channels in corneal endothelium.

作者信息

Rae J L, Watsky M A

机构信息

Department of Physiology and Biophysics and Ophthalmology, Mayo Foundation, Rochester, Minnesota 55905, USA.

出版信息

Am J Physiol. 1996 Apr;270(4 Pt 1):C975-89. doi: 10.1152/ajpcell.1996.270.4.C975.

Abstract

Single-channel patch-clamp techniques as well as standard and perforated-patch whole cell voltage-clamp techniques have been applied to the study of ionic channels in the corneal endothelium of several species. These studies have revealed two major K+ currents. One is due to an anion- and temperature-stimulated channel that is blocked by Cs+ but not by most other K+ channel blockers, and the other is similar to the family of A-currents found in excitable cells. The A-current is transient after a depolarizing voltage step and is blocked by both 4-aminopyridine and quinidine. These two currents are probably responsible for setting the -50 to -60 mV resting voltage reported for these cells. A Ca(2+)-activated ATP-inhibited nonselective cation channel and a tetrodotoxin-blocked Na+ channel are possible Na+ inflow pathways, but, given their gating properties, it is not certain that either channel works under physiological conditions. A large-conductance anion channel has also been identified by single-channel patch-clamp techniques. Single corneal endothelial cells have input resistances of 5-10 G omega and have steady-state K+ currents that are approximately 10 pA at the resting voltage. Pairs or monolayers of cells are electrically coupled and dye coupled through gap junctions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验