Buschmann P, Sack H, Köhler A E, Dahse I
Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, Institut für Biochemie und Biophysik, Jena.
J Membr Biol. 1996 Nov;154(2):109-18. doi: 10.1007/s002329900136.
Fresh-water plants generate extraordinarily high electric potential differences at the plasma membrane. For a deeper understanding of the underlying transport processes a mathematical model of the electrogenic plasmalemma ion transport was developed based on experimental data mainly obtained from Egeria densa. The model uses a general nonlinear network approach and assumes coupling of the transporters via membrane potential. A proton pump, an outward-rectifying K+ channel, an inward-rectifying K+ channel, a Cl- channel and a (2H-Cl)+ symporter are considered to be elements of the system. The model takes into consideration the effects of light, external pH and ionic content of the bath medium on ion transport. As a result it does not only satisfactorily describe the membrane potential as a function of these external physiological factors but also succeeds in simulating the effects of specific inhibitors as well as I-V-curves obtained with the patch-clamp technique in the whole cell mode. The quality of the model was checked by stability and sensitivity analyses.
淡水植物在质膜上产生极高的电位差。为了更深入地理解其潜在的运输过程,基于主要从伊乐藻获得的实验数据,开发了一种关于生电质膜离子运输的数学模型。该模型采用一般的非线性网络方法,并假设转运体通过膜电位进行耦合。质子泵、外向整流钾通道、内向整流钾通道、氯通道和(2H-Cl)+同向转运体被视为该系统的组成部分。该模型考虑了光照、外部pH值和浴液介质离子含量对离子运输的影响。结果,它不仅能令人满意地将膜电位描述为这些外部生理因素的函数,还成功模拟了特定抑制剂的作用以及在全细胞模式下用膜片钳技术获得的电流-电压曲线。通过稳定性和敏感性分析对模型的质量进行了检验。