Suppr超能文献

Transforming growth factor-beta protein and messenger RNA expression is increased in the closing ductus arteriosus.

作者信息

Tannenbaum J E, Waleh N S, Mauray F, Gold L, Perkett E A, Clyman R I

机构信息

Cardiovascular Research Institute, University of California, San Francisco 94143-0544, USA.

出版信息

Pediatr Res. 1996 Mar;39(3):427-34. doi: 10.1203/00006450-199603000-00009.

Abstract

In full-term newborns, permanent closure of the ductus arteriosus is associated with the formation of a neointima that is characterized by extracellular matrix deposition and smooth muscle cell migration. Transforming growth factor-beta (TGF-beta), a potent modulator of extracellular matrix deposition and smooth muscle cell migration, has been found to play a role in the remodeling associated with several forms of vascular disease. We examined the protein and mRNA expression of the three mammalian isoforms of TGF-beta (TGF-beta1, TGF-beta2, and TGF-beta3) during ductus arteriosus closure in full-term lambs. We found that the temporal changes and cellular localization of the proteins and mRNAs of all three TGF-beta isoforms were similar. TGF-beta proteins and mRNAs were present in very low levels in the late-gestation fetal ductus. Within 24 h of delivery, there was enhanced expression of TGF-beta in the newly forming neointima and outer muscle media; this continued to increase over the next 10 d. Increased expression of TGF-beta in the inner muscle media and adventitia lagged behind that of the neointima and outer muscle media. TGF-beta was not found in the luminal endothelial cells at any time. In contrast to the pattern described above, the appearance of TGF-beta protein differed from that of mRNA in the vasa vasorum of the ductus wall. After delivery, there was an increase in TGF-beta immunoreactivity in the smooth muscle cell layers of the vasa vasorum without any concurrent mRNA expression. The appearance of TGF-beta at the time of ductus closure suggests an important role for this growth factor in the reorganization of the ductus wall after birth.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验