Kamendulis L M, Brzezinski M R, Pindel E V, Bosron W F, Dean R A
Department of Pathology, Indiana University School of Medicine, Indianapolis, USA.
J Pharmacol Exp Ther. 1996 Nov;279(2):713-7.
Concomitant i.v. use of cocaine and heroin ("speedballing") is prevalent among drug-abusing populations. Heroin is rapidly metabolized by sequential deacetylation of two separate ester bonds to yield 6-monoacetylmorphine and morphine. Hydrolysis of heroin to 6-monoacetylmorphine is catalyzed by pseudocholinesterase. The pathway for hydrolysis of 6-monoacetylmorphine to morphine in vivo has yet to be established. Pseudocholinesterase and two human liver carboxylesterases [human liver carboxylesterase form 1 (hCE-1) and human liver carboxylesterase form 2 (hCE-2)] catalyze the rapid hydrolysis of ester linkages in cocaine. This investigation examined the relative catalytic efficiencies of hCE-1, hCE-2 and pseudocholinesterase for heroin metabolism and compared them with cocaine hydrolysis. Enzymatic formation of 6-monoacetylmorphine and morphine was determined by reverse-phase high-performance liquid chromatography. All three enzymes rapidly catalyzed hydrolysis of heroin to 6-monoacetylmorphine (hCE-1 kcat = 439 min-1, hCE-2 kcat = 2186 min-1 and pseudocholinesterase kcat = 13 min-1). The catalytic efficiency, under first-order conditions, for hCE-2-catalyzed formation of 6-monoacetylmorphine (314 min-1 mM-1) was much greater than that for either hCE-1 or pseudocholinesterase (69 and 4 min-1 mM-1, respectively). Similarly, the catalytic efficiency for hydrolysis of 6-monoacetylmorphine to morphine by hCE-2 (22 min-1 mM-1) was substantially greater than that for hCE-1 (0.024 min-1 mM-1). Cocaine competitively inhibited hCE-1-, hCE-2- and pseudocholinesterase-catalyzed hydrolysis of heroin to 6-monoacetylmorphine (Ki = 530, 460 and 130 microM, respectively) and 6-monoacetylmorphine hydrolysis to morphine (Ki = 710, 220 and 830 microM, respectively). These data demonstrate that metabolism of cocaine and heroin in humans is mediated by common metabolic pathways. The role of hepatic hCE-2 is particularly important for the hydrolysis of heroin to 6-monoacetylmorphine and of 6-monoacetylmorphine to morphine.
在吸毒人群中,静脉注射可卡因和海洛因(“速球”)的情况很普遍。海洛因通过两个独立酯键的顺序脱乙酰化迅速代谢,生成6-单乙酰吗啡和吗啡。海洛因水解为6-单乙酰吗啡由假性胆碱酯酶催化。6-单乙酰吗啡在体内水解为吗啡的途径尚未明确。假性胆碱酯酶和两种人肝脏羧酸酯酶[人肝脏羧酸酯酶1型(hCE-1)和人肝脏羧酸酯酶2型(hCE-2)]催化可卡因中酯键的快速水解。本研究考察了hCE-1、hCE-2和假性胆碱酯酶对海洛因代谢的相对催化效率,并将它们与可卡因水解的效率进行比较。通过反相高效液相色谱法测定6-单乙酰吗啡和吗啡的酶促生成。所有三种酶都能迅速催化海洛因水解为6-单乙酰吗啡(hCE-1的催化常数kcat = 439分钟-1,hCE-2的kcat = 2186分钟-1,假性胆碱酯酶的kcat = 13分钟-1)。在一级反应条件下,hCE-2催化生成6-单乙酰吗啡的催化效率(314分钟-1毫摩尔-1)远高于hCE-1或假性胆碱酯酶(分别为69和4分钟-1毫摩尔-1)。同样,hCE-2将6-单乙酰吗啡水解为吗啡的催化效率(22分钟-1毫摩尔-1)也远高于hCE-1(0.024分钟-1毫摩尔-1)。可卡因竞争性抑制hCE-1、hCE-2和假性胆碱酯酶催化的海洛因水解为6-单乙酰吗啡(抑制常数Ki分别为530、460和130微摩尔)以及6-单乙酰吗啡水解为吗啡(Ki分别为710、220和830微摩尔)。这些数据表明,人类体内可卡因和海洛因的代谢由共同的代谢途径介导。肝脏hCE-2在海洛因水解为6-单乙酰吗啡以及6-单乙酰吗啡水解为吗啡的过程中作用尤为重要。