Suppr超能文献

用于估计神经元被动电学特性的白噪声方法。

White noise approach for estimating the passive electrical properties of neurons.

作者信息

Wright W N, Bardakjian B L, Valiante T A, Perez-Velazquez J L, Carlen P L

机构信息

Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada.

出版信息

J Neurophysiol. 1996 Nov;76(5):3442-50. doi: 10.1152/jn.1996.76.5.3442.

Abstract
  1. The passive electrical properties of whole cell patched dentate granule cells were studied with the use of zero-mean Gaussian white noise current stimuli. Transmembrane voltage responses were used to compute the first-order Wiener kernels describing the current-voltage relationship at the soma for six cells. Frequency domain optimization techniques using a gradient method for function minimization were then employed to identify the optimal electrical parameter values. Low-power white noise stimuli are presented as a favorable alternative to the use of short-pulse current inputs for investigating neuronal passive electrical properties. 2. The optimization results demonstrated that the lumped resistive and capacitive properties of the recording electrode must be included in the analytic input impedance expression to optimally fit the measured cellular responses. The addition of the electrode resistance (Re) and capacitance (Ce) to the original parameters (somatic conductance, somatic capacitance, axial resistance, dendritic conductance, and dendritic capacitance) results in a seven-parameter model. The mean Ce value from the six cells was 5.4 +/- 0.3 (SE) pF, whereas Re following formation of the patch was found to be 20 +/- 2 M omega. 3. The six dentate granule cells were found to have an input resistance of 600 +/- 20 M omega and a dendritic to somatic conductance ratio of 6.3 +/- 1.1. The electronic length of the equivalent dendritic cylinder was found to be 0.42 +/- 0.03. The membrane time constant in the soma was found to be 13 +/- 3 ms, whereas the membrane time constant of the dendrites was 58 +/- 5 ms. Incorporation of morphological estimations led to the following distributed electrical parameters: somatic membrane resistance = 25 +/- 4 k omega cm2, somatic membrane capacitance = 0.48 +/- 0.05 microF/cm2, Ri (input resistance) = 72 +/- 5 omega cm, dendritic membrane resistance = 59 +/- 4 k omega cm2, and dendritic membrane capacitance = 0.97 +/- 0.06 microF/cm2. On the basis of capacitive measurements, the ratio of dendritic surface area to somatic surface area was found to be 34 +/- 2. 4. For comparative purposes, hyperpolarizing short pulses were also injected into each cell. The short-pulse input impedance measurements were found to underestimate the input resistance of the cell and to overestimate both the somatic conductance and the membrane time constants relative to the white noise input impedance measurements.
摘要
  1. 使用零均值高斯白噪声电流刺激研究了全细胞膜片钳记录的齿状颗粒细胞的被动电学特性。利用六个细胞的跨膜电压响应来计算描述胞体电流 - 电压关系的一阶维纳核。然后采用使用梯度法进行函数最小化的频域优化技术来确定最佳电学参数值。低功率白噪声刺激被认为是一种比使用短脉冲电流输入更有利的替代方法,用于研究神经元的被动电学特性。2. 优化结果表明,记录电极的集总电阻和电容特性必须包含在分析输入阻抗表达式中,以最佳拟合测量的细胞响应。在原始参数(胞体电导、胞体电容、轴向电阻、树突电导和树突电容)中加入电极电阻(Re)和电容(Ce),得到一个七参数模型。六个细胞的平均Ce值为5.4±0.3(标准误)pF,而膜片形成后的Re为20±2 MΩ。3. 发现六个齿状颗粒细胞的输入电阻为600±20 MΩ,树突与胞体电导比为6.3±1.1。等效树突圆柱体的电学长度为0.42±0.03。胞体的膜时间常数为13±3 ms,而树突的膜时间常数为58±5 ms。纳入形态学估计得到以下分布电学参数:胞体膜电阻 = 25±4 kΩ·cm²,胞体膜电容 = 0.48±0.05 μF/cm²,Ri(输入电阻) = 72±5 Ω·cm,树突膜电阻 = 59±4 kΩ·cm²,树突膜电容 = 0.97±0.06 μF/cm²。基于电容测量,发现树突表面积与胞体表面积之比为34±2。4. 为了进行比较,还向每个细胞注入了超极化短脉冲。发现短脉冲输入阻抗测量相对于白噪声输入阻抗测量低估了细胞的输入电阻,高估了胞体电导和膜时间常数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验