Suppr超能文献

与野生型仓鼠相比,tau突变体仓鼠视交叉上核中运动活动的昼夜节律以及加压素和血管活性肠肽基因表达的定量差异。

Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters.

作者信息

Scarbrough K, Turek F W

机构信息

Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.

出版信息

Brain Res. 1996 Oct 14;736(1-2):251-9. doi: 10.1016/0006-8993(96)00709-3.

Abstract

The activity profiles of homozygous tau mutant hamsters bred in our colony exhibit several differences when compared to wildtype golden hamsters. In addition, tau mutant hamsters respond to saturating white light pulses presented between circadian time (CT) 11 and CT 16 with extremely large phase shifts (type 0 resetting) after prolonged time in constant darkness. We measured five parameters of the activity rhythm early during exposure to constant darkness (DD) (cycles 5-9), and after 44-48 cycles in DD, and we confirmed the tau mutants' unusual phase shifting response to light. Next we determined whether neurotransmitter peptide mRNA levels in the SCN differed between wildtype and tau mutant hamsters exhibiting these divergent activity patterns and responses to light. After 49 circadian cycles in DD, tau mutant hamsters responded to a 1 h light pulse at CT 15 with phase shifts averaging 10.19 +/- 0.35 h. Among wildtype hamsters the mean phase shift was 1.22 +/- 0.34 h and the largest phase shift observed was 3.67 h. Total wheel revolutions/circadian cycle were significantly lower in tau mutants (4022 +/- 1103) vs. wildtypes (7528 +/- 458) and there was a significant decrease in wheel-running activity after prolonged exposure to DD, particularly among the wildtype hamsters (tau = 3045 +/- 972, wildtype = 4362 +/- 388 rev/circadian cycle). When analyzed by 5 min segments throughout the circadian cycle, the highest intensity wheel-running activity did not differ between groups and there was no significant effect of length of time in DD on this measure (tau = 38.5 +/- 6.3 and 38.4 +/- 4.7 rev/min, wildtype = 46.8 +/- 1.7 and 41.4 +/- 2.7 rev/min early or late in DD, respectively). The precision of activity onset differed greatly between groups with tau mutants exhibiting a much higher daily deviation from mean tau (1.00 +/- 0.24 h) than wildtypes (0.14 +/- .02 h). Activity onset became significantly less precise with increased time in DD: tau = 1.66 +/- 0.21 h, wildtype = 0.45 +/- 0.14 h after 44-48 circadian cycles. The length of the active period, alpha, was significantly shorter in tau mutants than in wildtypes (7.2 +/- 0.2 h vs. 8.0 +/- 0.2 h) but alpha was a similar percentage of tau in the two groups (tau mutant = 36%, wildtype = 33%). After 48 circadian cycles in DD, alpha measured 7.2 +/- 0.5 h in tau mutants and 8.9 +/- 0.6 h in wildtypes, thus there was no significant effect of time in DD on this parameter. Activity records of tau mutant animals appear more fragmented to the eye and we quantitated this with a computer-aided analysis of the number of bouts of wheel-running per active period. Wildtype hamsters exhibited 2.8 +/- 0.2 bouts of wheel-running activity early in DD and 3.1 +/- 0.2 bouts per circadian cycle later in DD. The activity records of tau mutant hamsters were significantly more fragmented but this group actually showed some consolidation of bouts per circadian cycle after prolonged time in DD (4.7 +/- 0.3 vs. 3.9 +/- 0.3 bouts per cycle). Wildtype and tau mutant hamsters were killed after 66-71 cycles in DD at either CT 4 or CT 16 and in situ hybridization was performed for vasopressin (AVP) and vasoactive intestinal peptide (VIP). Levels of AVP and VIP mRNA were significantly lower in tau mutant than wildtype hamsters at CT 16. We conclude that the tau mutation causes these differences in gene expression and we speculate that differences in the peptidergic output of the clock may have some relevance for the differences in the quantitative aspects of the activity rhythm and the response to light pulses exhibited by these animals.

摘要

与野生型金黄仓鼠相比,我们繁殖群体中的纯合tau突变仓鼠的活动模式表现出若干差异。此外,在持续黑暗中长时间停留后,tau突变仓鼠在昼夜节律时间(CT)11至CT 16之间受到饱和白光脉冲刺激时,会出现极大的相位偏移(0型重置)。我们在暴露于持续黑暗(DD)的早期(第5 - 9个周期)以及DD中44 - 48个周期后,测量了活动节律的五个参数,并证实了tau突变体对光的异常相位偏移反应。接下来,我们确定了在表现出这些不同活动模式和对光反应的野生型和tau突变仓鼠之间,视交叉上核(SCN)中神经递质肽mRNA水平是否存在差异。在DD中49个昼夜周期后,tau突变仓鼠在CT 15受到1小时光脉冲刺激时,相位偏移平均为10.19±0.35小时。在野生型仓鼠中,平均相位偏移为1.22±0.34小时,观察到的最大相位偏移为3.67小时。tau突变体(4022±1103)与野生型(7528±458)相比,总轮转数/昼夜周期显著更低,并且在长时间暴露于DD后,轮转活动显著减少,尤其是在野生型仓鼠中(tau = 3045±972,野生型 = 4362±388转/昼夜周期)。当在整个昼夜周期按5分钟时间段进行分析时,两组之间最高强度的轮转活动没有差异,并且DD中停留时间的长短对该指标没有显著影响(tau在DD早期和晚期分别为38.5±6.3和38.4±4.7转/分钟,野生型分别为46.8±1.7和41.4±2.7转/分钟)。两组之间活动开始的精确性差异很大,tau突变体表现出比野生型(0.14±0.02小时)更高的每日偏离平均tau值(1.00±0.24小时)。随着在DD中时间的增加,活动开始变得明显不那么精确:在44 - 48个昼夜周期后,tau = 1.66±0.21小时,野生型 = 0.45±0.14小时。活动期的长度α,tau突变体显著短于野生型(7.2±0.2小时对8.0±0.2小时),但α在两组中占tau的百分比相似(tau突变体 = 36%,野生型 = 33%)。在DD中48个昼夜周期后,tau突变体的α为7.2±0.5小时,野生型为8.9±0.6小时,因此DD中的时间对该参数没有显著影响。tau突变动物的活动记录在肉眼看来似乎更碎片化,我们通过计算机辅助分析每个活动期的轮转次数来对此进行量化。野生型仓鼠在DD早期每个昼夜周期表现出2.8±0.2次轮转活动,后期为3.1±0.2次。tau突变仓鼠的活动记录明显更碎片化,但在长时间处于DD后,该组每个昼夜周期的活动次数实际上出现了一些整合(4.7±0.3次对3.9±0.3次/周期)。在DD中66 - 71个周期后,野生型和tau突变仓鼠在CT 4或CT 16处被处死,并对加压素(AVP)和血管活性肠肽(VIP)进行原位杂交。在CT 16时,tau突变仓鼠中AVP和VIP mRNA水平显著低于野生型仓鼠。我们得出结论,tau突变导致了这些基因表达的差异,并且我们推测生物钟肽能输出的差异可能与这些动物活动节律的定量方面以及对光脉冲反应的差异存在某种关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验