Rayeq M R, Boulay S F, Sood V K, McPherson D W, Knapp F F, Zeeberg B R
Department of Radiology, George Washington University Medical Center, NW, Washington D.C. 20037, USA.
Recept Signal Transduct. 1996;6(1):13-34.
(R,S)-[125I]IQNB has been used extensively in in vivo studies in rats and has been of utility in demonstrating the in vivo subtype selectivity of nonradioactive ligands in competition studies. Radiolabeled Z- and E-(-,-)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z- and E-[-,-]-[125I]IQNP) are analogs of (R,S)-[125I]IQNB. Preliminary rat brain regional dissection studies have indicated that Z- and E-(-,-)-[125I]IQNP, in general, are distributed similarly to (R,S)-[125I]IQNB. An important observation is that Z-(-,-)-[125I]IQNP binds to the muscarinic receptors in those brain regions enriched in the m2 subtype with approximately a two- to fivefold higher percent dose/g compared to (R,S)-[125I]IQNB. These observations are confirmed here by in vivo autoradiographic comparison of the time-courses of (R,S)-[125I]IQNB, Z-(-,-)-[125I]IQNP, and E-(-,-)-[125I]IQNP. Thus, in vivo competition studies against Z-(-,-)-[125I]IQNP would provide a potentially more sensitive and accurate probe for demonstrating the in vivo m2 selectivity of the nonradioactive ligands. In addition, Z-(-,-)-[123I]IQNP would potentially be useful for SPECT imaging of muscarinic receptor loss in neurodegenerative diseases.