Suppr超能文献

The hematological effects of folate analogs: implications for using the dihydrofolate reductase gene for in vivo selection.

作者信息

Blau C A, Neff T, Papayannopoulou T

机构信息

Division of Hematology, University of Washington, Seattle, 98195, USA.

出版信息

Hum Gene Ther. 1996 Nov 10;7(17):2069-78. doi: 10.1089/hum.1996.7.17-2069.

Abstract

Previous studies have shown that dihydrofolate reductase (DHFR) gene transfer protects marrow from methotrexate (MTX)-mediated toxicity; however, MTX treatment in vivo has not convincingly been shown to enrich DHFR-transduced progenitors or stem cells. Experiments were performed to better characterize the hematological effects of MTX, and maneuvers were tested with the aim of improving the utility of MTX as an agent for in vivo selection. Progenitors were assayed as colony forming unit cells in culture (CFU-C) and in the spleens of irradiated mice (day 11 CFU-S). A single injection of MTX at doses up to 250 mg/kg (more than three times the LD10) failed to reduce CFU-C numbers significantly in the femur or spleen assayed 1-3 days later. However, consistent declines in the number of mononuclear cells per femur reflected a significant depletion of nonclonogenic precursor cells. Preceding administration of pegylated stem cell factor (SCF), 100 micrograms/kg per day, increased CFU-C killing by a single dose of 5-fluorouracil (5-FU) 15- to 65-fold in the femur, and 5- to 15-fold in the spleen, consistent with previous reports. In contrast, despite preceding SCF administration there was no significant progenitor killing by MTX. Similar results were obtained using a second folate analog, trimetrexate. These results suggest that the mechanism by which folate analogs exert their hematological toxicity is through the depletion of relatively mature, nonclonogenic precursor cells, and not by killing progenitors. This information is relevant to the use of DHFR in gene therapy protocols, and suggests that folate analogs are poorly suited agents for selection at the level of clonogenic progenitor cells in vivo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验