Rubin D B, Thomas N
Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, USA.
Biometrics. 1996 Mar;52(1):249-64.
Matched sampling is a standard technique in the evaluation of treatments in observational studies. Matching on estimated propensity scores comprises an important class of procedures when there are numerous matching variables. Recent theoretical work (Rubin, D. B. and Thomas, N., 1992, The Annals of Statistics 20, 1079-1093) on affinely invariant matching methods with ellipsoidal distributions provides a general framework for evaluating the operating characteristics of such methods. Moreover, Rubin and Thomas (1992, Biometrika 79, 797-809) uses this framework to derive several analytic approximations under normality for the distribution of the first two moments of the matching variables in samples obtained by matching on estimated linear propensity scores. Here we provide a bridge between these theoretical approximations and actual practice. First, we complete and refine the nomal-based analytic approximations, thereby making it possible to apply these results to practice. Second, we perform Monte Carlo evaluations of the analytic results under normal and nonnormal ellipsoidal distributions, which confirm the accuracy of the analytic approximations, and demonstrate the predictable ways in which the approximations deviate from simulation results when normal assumptions are violated within the ellipsoidal family. Third, we apply the analytic approximations to real data with clearly nonellipsoidal distributions, and show that the theoretical expressions, although derived under artificial distributional conditions, produce useful guidance for practice. Our results delineate the wide range of settings in which matching on estimated linear propensity scores performs well, thereby providing useful information for the design of matching studies. When matching with a particular data set, our theoretical approximations provide benchmarks for expected performance under favorable conditions, thereby identifying matching variables requiring special treatment. After matching is complete and data analysis is at hand, our results provide the variances required to compute valid standard errors for common estimators.
匹配抽样是观察性研究中评估治疗方法的一种标准技术。当存在众多匹配变量时,基于估计倾向得分进行匹配是一类重要的程序。最近关于具有椭圆分布的仿射不变匹配方法的理论工作(鲁宾,D. B. 和托马斯,N.,1992年,《统计学年鉴》20,1079 - 1093)为评估此类方法的操作特性提供了一个通用框架。此外,鲁宾和托马斯(1992年,《生物统计学》79,797 - 809)利用这个框架推导了在正态性假设下,通过基于估计的线性倾向得分进行匹配所获得样本中匹配变量前两阶矩分布的几个解析近似值。在此,我们在这些理论近似值与实际应用之间搭建了一座桥梁。首先,我们完善并细化了基于正态的解析近似值,从而使这些结果能够应用于实际。其次,我们对正态和非正态椭圆分布下的解析结果进行了蒙特卡罗评估,这证实了解析近似值的准确性,并展示了在椭圆族中违反正态假设时,近似值与模拟结果产生偏差的可预测方式。第三,我们将解析近似值应用于具有明显非椭圆分布的实际数据,并表明理论表达式虽然是在人为分布条件下推导出来的,但能为实际应用提供有用的指导。我们的结果描绘了基于估计的线性倾向得分进行匹配表现良好的广泛场景,从而为匹配研究的设计提供了有用信息。当与特定数据集进行匹配时,我们的理论近似值为有利条件下的预期性能提供了基准,从而确定需要特殊处理的匹配变量。匹配完成且进行数据分析时,我们的结果提供了计算常见估计量有效标准误差所需的方差。