Suppr超能文献

Opposite developmental regulation of P- and Q-type calcium currents during ontogenesis of large diameter mouse sensory neurons.

作者信息

Hilaire C, Diochot S, Desmadryl G, Baldy-Moulinier M, Richard S, Valmier J

机构信息

Laboratoire de médecine expérimentale, Montpellier, France.

出版信息

Neuroscience. 1996 Dec;75(4):1219-29. doi: 10.1016/0306-4522(96)00347-8.

Abstract

Analysis of neuronal development has emphasized the importance of voltage-activated Ca2+ currents during the initial period of differentiation. We investigated non-N, non-L Ba2+ currents through Ca2+ channels in freshly dissociated large diameter embryonic mouse dorsal root ganglion neurons using the whole-cell patch-clamp technique. Two types of omega-agatoxin IVA-sensitive currents were clearly distinguished at embryonic day 13: a sustained P-type current blocked selectively at 30 nM (IC50 = 3nM) and an inactivating Q-type current blocked in the range 50-500 nM (IC50 = 120nM). The P-type Ca2+ current disappeared at day 15 whereas the Q-type Ca2+ current increased two- to three-fold during the same embryonic period. In contrast, the contribution of the non-L, non-N, omega-agatoxin IVA-resistant current (R-type) was constant during this developmental span. In conclusion, our results clearly show that P- and Q-type Ca2+ currents are differentially expressed during ontogenesis in large diameter dorsal root ganglion neurons. The developmental change, which occurs during the period of target innervation, could be related to specific key events such as natural neuron death and onset of synapse formation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验