Suppr超能文献

在随机模型下,利用基于血缘同一性的期望或分布来定位数量性状基因座。

Using the expectation or the distribution of the identity by descent for mapping quantitative trait loci under the random model.

作者信息

Gessler D D, Xu S

机构信息

Department of Botany and Plant Sciences, University of California, Riverside 93531, USA.

出版信息

Am J Hum Genet. 1996 Dec;59(6):1382-90.

Abstract

We examine the ability of four implementations of the random model to map quantitative trait loci (QTLs). The implementations use either the expectation or the distribution of the identity-by-descent value at a putative QTL and either a 2 x 1 vector of sib-pair traits or their scalar difference. When the traits of both sibs are used, there is little difference between the expectation and distribution methods, while the expectation method suffers in both precision and power when the difference between traits is used. This is consistent with the prediction that the difference between the expectation and distribution methods is inversely proportional to the amount of information available for mapping. We find, though, that the amount of information must be very low for this difference to be noticeable. This is exemplified when both marker loci are fixed. In this case, while the expectation method is powerless to detect the QTL, the distribution method can still detect the presence (but not the position) of the QTL 59% of the time (when using trait values) or 14% of the time (when using trait differences). We also note a confounding between estimates of the QTL, polygenic, and error variance. The degree of confounding is small when the vector of trait values is used but can be substantial when the expectation method and trait differences are used. We discuss this in light of the general ability of the random model to partition these components.

摘要

我们检验了随机模型的四种实现方式定位数量性状基因座(QTL)的能力。这些实现方式要么使用假定QTL处的血统值期望,要么使用其分布,并且要么使用同胞对性状的2×1向量,要么使用它们的标量差。当使用两个同胞的性状时,期望方法和分布方法之间差异不大,而当使用性状差时,期望方法在精度和功效方面都较差。这与期望方法和分布方法之间的差异与可用于定位的信息量成反比的预测一致。不过,我们发现,要使这种差异明显,信息量必须非常低。当两个标记基因座都固定时就是例证。在这种情况下,虽然期望方法无法检测到QTL,但分布方法仍能在59%的时间(使用性状值时)或14%的时间(使用性状差时)检测到QTL的存在(但不是位置)。我们还注意到QTL、多基因和误差方差估计之间存在混淆。当使用性状值向量时,混淆程度较小,但当使用期望方法和性状差时,混淆程度可能很大。我们根据随机模型划分这些成分的一般能力对此进行了讨论。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验