Liang M N, Lee C, Xia Y, McConnell H M
Department of Chemistry, Stanford University, California 94305-5080, USA.
Biochemistry. 1996 Nov 26;35(47):14734-42. doi: 10.1021/bi961725b.
We have used molecular modeling to design substitutions in an invariant chain-derived peptide (CLIP), so as to alter the stability of its complex with class II major histocompatibility complex (MHC) proteins. We sought first to test whether CLIP binds in the same way to different class II MHC proteins. We designed destabilizing substitutions of two residues (Met 91 and Met 99) previously predicted to act as the major anchor residues for binding to all class II MHC and measured their effect on CLIP's dissociation rate from a series of three murine I-A MHC proteins. Even a conservative substitution preserving size and hydrophobicity but reducing flexibility (leucine, a branched residue) caused large accelerations in dissociation rates (up to 25-fold) at either position in all three MHC alleles, supporting the consistent role of these positions as the major anchors for MHC binding. These data also support the view that the special flexibility of the methionine side chains at these positions is essential for binding to diverse MHC molecules. We also used molecular modeling to design allele-specific enhancements of peptide binding. Designed substitutions of CLIP Pro 96 by Ala (for Ad), Glu (Ak), and Tyr (Au) each yielded strong enhancement of binding (up to 128-fold) for their targeted allele and only moderate or destabilizing effects to the other alleles. These results demonstrate the accuracy of the molecular models and the predictive value of this modeling. Moreover, they provide strong evidence for the proposed general model of invariant chain association, indicating that it binds to all class II MHC in the same conformation.
我们利用分子建模技术对恒定链衍生肽(CLIP)进行取代设计,以改变其与II类主要组织相容性复合体(MHC)蛋白形成的复合物的稳定性。我们首先试图测试CLIP是否以相同方式结合不同的II类MHC蛋白。我们设计了对两个残基(甲硫氨酸91和甲硫氨酸99)的去稳定取代,这两个残基先前被预测为与所有II类MHC结合的主要锚定残基,并测量了它们对CLIP从一系列三种小鼠I-A MHC蛋白解离速率的影响。即使是保守取代,保留了大小和疏水性但降低了柔韧性(亮氨酸,一种支链残基),在所有三个MHC等位基因的任一位置都导致解离速率大幅加快(高达25倍),支持了这些位置作为MHC结合主要锚定的一致作用。这些数据还支持这样一种观点,即这些位置甲硫氨酸侧链的特殊柔韧性对于与多种MHC分子结合至关重要。我们还利用分子建模设计了肽结合的等位基因特异性增强。将CLIP的脯氨酸96分别替换为丙氨酸(针对Ad)、谷氨酸(Ak)和酪氨酸(Au),对其靶向等位基因均产生了强烈的结合增强(高达128倍),而对其他等位基因只有中等或去稳定作用。这些结果证明了分子模型的准确性以及这种建模的预测价值。此外,它们为所提出的恒定链缔合通用模型提供了有力证据,表明它以相同构象与所有II类MHC结合。