Suppr超能文献

The effects of inositol 1,4,5-trisphosphate (InsP3) analogues on the transient kinetics of Ca2+ release from cerebellar microsomes. InsP3 analogues act as partial agonists.

作者信息

Mezna M, Michelangeli F

机构信息

School of Biochemistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom.

出版信息

J Biol Chem. 1996 Dec 13;271(50):31818-23. doi: 10.1074/jbc.271.50.31818.

Abstract

An investigation of the effects of a number of inositol trisphosphate analogues on the transient kinetics of Ca2+ release from cerebellar microsomes was undertaken. All the analogues investigated could release the total Ca2+ content of the inositol 1, 4,5-trisphosphate (Ins(1,4,5)P3) mobilizable Ca2+ store; however, their potencies were substantially reduced compared to Ins(1,4,5)P3. The concentration required to induce half-maximal Ca2+ mobilization was 0.14 microM for Ins(1,4,5)P3, 1.8 microM for 3-deoxyinositol 1,4, 5-trisphosphate (3-deoxyInsP3), 1.0 microM for 2,3-dideoxyinositol 1, 4,5-trisphosphate (2,3-dideoxyInsP3), 24 microM for 2,3, 6-trideoxyinositol 1,4,5-trisphopshate (2,3,6-trideoxyInsP3), and 2.9 microM for inositol 2,4,5-trisphosphate (Ins(2,4,5)P3). In all cases and for all concentrations tested, the inositol trisphosphate analogues induced biphasic transient release of Ca2+, which could fit to a biexponential equation assuming two independent processes. The rate constants calculated for the release process were much larger for Ins(1,4,5)P3 than the other inositol trisphosphates (the fast phase rate constant varying from 0.3 to 1.6 s-1 and the slow phase from 0.01-0.5 s-1, at concentrations between 0.03 and 20 microM Ins(1,4,5)P3). The rate constants for all other inositol trisphosphates did not appear to exceed 0.4 s-1 for the fast phase and 0.1 s-1 for the slow phase at their highest concentrations tested. The maximum amplitudes for Ca2+ release by the two phases appeared to be similar for all inositol trisphosphates (approximately 45% for the fast phase and approximately 55% for the slow phase). On comparing the rate constants for Ca2+ release at inositol trisphosphate concentrations for the analogues which all induced the same extent of Ca2+ release, it was apparent that the rates of release were independent of the extent of Ca2+ release. As the extent of Ca2+ release can be related to degree of occupancy of the binding sites, it is evident that different analogues which occupy the binding site of the receptor to the same extent can induce Ca2+ to be released at different rates. We explain this conclusion in terms of partial agonism where inositol phosphates can induce two (or more) occupied states of the channel.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验