Suppr超能文献

原始运动学数据平滑与微分中的端点误差:四种常用方法的评估

Endpoint error in smoothing and differentiating raw kinematic data: an evaluation of four popular methods.

作者信息

Vint P F, Hinrichs R N

机构信息

Exercise and Sport Research Institute, Arizona State University, Tempe 85287-0404, USA.

出版信息

J Biomech. 1996 Dec;29(12):1637-42.

PMID:8945665
Abstract

'Endpoint error' describes the erratic behavior at the beginning and end of the computed acceleration data which is commonly observed after smoothing and differentiating raw displacement data. To evaluate endpoint error produced by four popular smoothing and differentiating techniques, Lanshammar's (1982, J. Biomechanics 15, 99-105) modification of the Pezzack et al. (1977, J. Biomechanics, 10, 377-382) raw angular displacement data set was truncated at three different locations corresponding to the major peaks in the criterion acceleration curve. Also, for each data subset, three padding conditions were applied. Each data subset was smoothed and differentiated using the Butterworth digital filter, cubic spline, quintic spline, and Fourier series to obtain acceleration values. RMS residual errors were calculated between the computed and criterion accelerations in the endpoint regions. Although no method completely eliminated endpoint error, the results demonstrated clear superiority of the quintic spline over the other three methods in producing accurate acceleration values close to the endpoints of the modified Pezzack et al. (1977) data set. In fact, the quintic spline performed best with non-padded data (cumulative error = 48.0 rad s-2). Conversely, when applied to non-padded data, the Butterworth digital filter produced wildly deviating values beginning more than the 10 points from the terminal data point (cumulative error = 226.6 rad s-2). Each of the four methods performed better when applied to data subsets padded by linear extrapolation (average cumulative error = 68.8 rad s-2) than when applied to analogous subsets padded by reflection (average cumulative error = 86.1 rad s-2).

摘要

“端点误差”描述的是在对原始位移数据进行平滑和微分后,通常会在计算出的加速度数据的起始和末尾出现的不稳定行为。为了评估四种常用的平滑和微分技术所产生的端点误差,兰沙马尔(1982年,《生物力学杂志》15卷,99 - 105页)对佩扎克等人(1977年,《生物力学杂志》10卷,377 - 382页)的原始角位移数据集进行了修改,在与标准加速度曲线中的主要峰值相对应的三个不同位置进行了截断。此外,对于每个数据子集,应用了三种填充条件。每个数据子集都使用巴特沃斯数字滤波器、三次样条、五次样条和傅里叶级数进行平滑和微分,以获得加速度值。计算了端点区域中计算出的加速度与标准加速度之间的均方根残差误差。尽管没有一种方法能完全消除端点误差,但结果表明,在生成接近修改后的佩扎克等人(1977年)数据集端点的准确加速度值方面,五次样条明显优于其他三种方法。事实上,五次样条在未填充数据时表现最佳(累积误差 = 48.0弧度每秒平方)。相反,当应用于未填充数据时,巴特沃斯数字滤波器在距离终端数据点超过10个点处就开始产生大幅偏差的值(累积误差 = 226.6弧度每秒平方)。这四种方法应用于通过线性外推填充的数据子集时(平均累积误差 = 68.8弧度每秒平方),比应用于通过反射填充的类似子集时(平均累积误差 = 86.1弧度每秒平方)表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验