Suppr超能文献

计算组合配体设计:在人α-凝血酶中的应用。

Computational combinatorial ligand design: application to human alpha-thrombin.

作者信息

Caflisch A

机构信息

Department of Biochemistry, University of Zürich, Switzerland.

出版信息

J Comput Aided Mol Des. 1996 Oct;10(5):372-96. doi: 10.1007/BF00124471.

Abstract

A new method is presented for computer-aided ligand design by combinatorial selection of fragments that bind favorably to a macromolecular target of known three-dimensional structure. Firstly, the multiple-copy simultaneous-search procedure (MCSS) is used to exhaustively search for optimal positions and orientations of functional groups on the surface of the macromolecule (enzyme or receptor fragment). The MCSS minima are then sorted according to an approximated binding free energy, whose solvation component is expressed as a sum of separate electrostatic and nonpolar contributions. The electrostatic solvation energy is calculated by the numerical solution of the linearized Poisson-Boltzmann equation, while the nonpolar contribution to the binding free energy is assumed to be proportional to the loss in solvent-accessible surface area. The program developed for computational combinatorial ligand design (CCLD) allows the fast and automatic generation of a multitude of highly diverse compounds, by connecting in a combinatorial fashion the functional groups in their minimized positions. The fragments are linked as two atoms may be either fused, or connected by a covalent bond or a small linker unit. To avoid the combinatorial explosion problem, pruning of the growing ligand is performed according to the average value of the approximated binding free energy of its fragments. The method is illustrated here by constructing candidate ligands for the active site of human alpha-thrombin. The MCSS minima with favorable binding free energy reproduce the interaction patterns of known inhibitors. Starting from these fragments, CCLD generates a set of compounds that are closely related to high-affinity thrombin inhibitors. In addition, putative ligands with novel binding motifs are suggested. Probable implications of the MCSS-CCLD approach for the evolving scenario of drug discovery are discussed.

摘要

本文提出了一种通过组合选择与已知三维结构的大分子靶标具有良好结合能力的片段来进行计算机辅助配体设计的新方法。首先,使用多拷贝同时搜索程序(MCSS)来详尽搜索大分子(酶或受体片段)表面上官能团的最佳位置和取向。然后根据近似结合自由能对MCSS极小值进行排序,其溶剂化成分表示为单独的静电和非极性贡献之和。静电溶剂化能通过线性化泊松 - 玻尔兹曼方程的数值解来计算,而非极性对结合自由能的贡献假定与溶剂可及表面积的损失成正比。为计算组合配体设计(CCLD)开发的程序允许通过以组合方式连接处于其最小化位置的官能团来快速自动生成大量高度多样化的化合物。片段之间的连接方式可以是两个原子融合,或者通过共价键或小的连接单元相连。为避免组合爆炸问题,根据其片段近似结合自由能的平均值对不断增长的配体进行修剪。本文通过构建人α-凝血酶活性位点的候选配体来说明该方法。具有良好结合自由能的MCSS极小值重现了已知抑制剂的相互作用模式。从这些片段开始,CCLD生成了一组与高亲和力凝血酶抑制剂密切相关的化合物。此外,还提出了具有新型结合基序的推定配体。讨论了MCSS - CCLD方法对药物发现不断发展的情况可能产生的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验