Brady PV, Cygan RT, Nagy KL
Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico, 87185-0750
J Colloid Interface Sci. 1996 Nov 10;183(2):356-64. doi: 10.1006/jcis.1996.0557.
pH-dependent, multisite, surface charge on kaolinite can be explained by proton donor-acceptor reactions occurring simultaneously on Si and Al sites exposed on basal planes and edges. Si site Bronsted acidity at the kaolinite-solution interface differs minimally from that of pure SiO2, whereas Al site acidity increases appreciably over that of pure Al2O3. Increasing temperature decreases the pK values of Al and Si proton-exchange sites. Calculated site densities indicate either an elevated participation of edges or substantial contribution from basal planes in the development of surface charge. Independent evidence from scanning force microscopy points to a higher percentage of edge surface area due to thicker particles and basal surface steps than previously assumed. Thus, no basal plane participation is required to explain the site densities determined from proton adsorption isotherms. Molecular modeling of the proton-relaxed kaolinite structure has been used to establish the elevated acidity of edge Al sites and to independently confirm the crystal-chemical controls on surface reactivity.
高岭石表面pH依赖的多位点表面电荷可通过在基面和边缘暴露的硅(Si)和铝(Al)位点上同时发生的质子供体-受体反应来解释。高岭石-溶液界面处的Si位点布朗斯特酸度与纯SiO₂的酸度差异最小,而Al位点酸度比纯Al₂O₃的酸度显著增加。温度升高会降低Al和Si质子交换位点的pK值。计算得到的位点密度表明,边缘的参与度提高或基面在表面电荷形成中起重要作用。扫描力显微镜的独立证据表明,由于颗粒更厚和基面台阶,边缘表面积的百分比高于先前的假设。因此,无需基面参与来解释由质子吸附等温线确定的位点密度。质子弛豫高岭石结构的分子模型已用于确定边缘Al位点的酸度升高,并独立证实对表面反应性的晶体化学控制。