Suppr超能文献

转运RNA的天冬氨酸同一性

Aspartate identity of transfer RNAs.

作者信息

Giegé R, Florentz C, Kern D, Gangloff J, Eriani G, Moras D

机构信息

Unité Structure des Macromolécules Biologioues et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France.

出版信息

Biochimie. 1996;78(7):605-23. doi: 10.1016/s0300-9084(96)80007-1.

Abstract

Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.

摘要

本文综述了酿酒酵母、大肠杆菌和嗜热栖热菌中II类天冬氨酰-tRNA合成酶对特定tRNA进行氨酰化的结构/功能关系。文中强调了与tRNA特征直接相关的影响,并探讨了合成酶在tRNA(Asp)身份表达中的作用。赋予酵母、大肠杆菌和嗜热栖热菌tRNA天冬氨酸特异性的主要身份核苷酸包括G34、U35、C36、C38和G73,这组核苷酸在其他生物来源的tRNA(Asp)分子中保守。通过负向鉴别(例如防止酵母精氨酰-tRNA合成酶对天然酵母tRNA(Asp)的错误氨酰化)可增强天冬氨酸特异性。在酵母系统中,晶体学研究表明,身份核苷酸与位于合成酶催化和反密码子结合结构域中的身份氨基酸相互接触。RNA/蛋白质相互作用的特异性涉及tRNA的构象变化,该变化优化了复合物中两个伙伴上身份信号的氢键形成潜力。身份核苷酸的突变导致氨酰化效率降低,同时特定氢键丧失,tRNA在合成酶上的适配性改变。天冬氨酸系统的物种特异性特征是次要身份信号的数量、位置和性质。这些特征以及天冬氨酸tRNA和合成酶的结构变化与各种天冬氨酰-tRNA合成酶催化的氨酰化反应中的机制差异相关。天冬氨酸身份集的真实性通过其在多种RNA框架中的功能表达得到验证。相反,在tRNA(Asp)框架内可以表达多种身份。由此产生了身份表达背后的RNA结构框架概念,这一概念通过工程化tRNA获得的数据得到了说明。小螺旋的高效氨酰化由G73的原始作用来解释。基于此及其他考虑,有人提出天冬氨酸身份在tRNA氨酰化系统的早期历史中就已出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验