Ameerun R F, de Winter J P, van den Eijnden-van Raaij A J, den Hertog J, de Laat S W, Tertoolen L G
Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands.
Cell Growth Differ. 1996 Dec;7(12):1679-88.
Murine P19 embryonal carcinoma (EC) cells can be differentiated into various germ layer derivatives. The addition of retinoic acid (RA) to P19-EC cell aggregates results in a transient activation of receptor protein tyrosine phosphatase-alpha (RPTP alpha). Subsequent replating of these aggregates leads to neuronal differentiation. P19-EC cells expressing constitutively active RPTP alpha (P19-RPTP alpha) show extensive neuronal differentiation upon RA treatment in monolayer. P19-RPTP alpha cells thus provide a suitable in vitro model for studying neuronal differentiation. We used P19-RPTP alpha cells to study the effects of activin and basic fibroblast growth factor (bFGF) on neurogenesis. We show that P19-RPTP alpha cells express mRNA for types I and II activin receptors. RA addition causes an up-regulation of receptor type IIA expression. Complexes of type I and II receptors were detectable by cross-linking assays both before and after RA treatment. Receptor complexes were functional as determined by transient transfection assays with activin responsive reporter constructs. Undifferentiated as well as differentiated P19-RPTP alpha cells express also the FGF receptors (FGFRs) FGFR-1 and FGFR-2 but not FGFR-3 and FGFR-4. Their functionality was established by bFGF induced mitogen-activated protein kinase phosphorylation. Activin and bFGF appeared to exert differential actions on RA-induced neuronal differentiation. Although activin irreversibly changes the differentiation fate into nonneuronal directions, bFGF does not affect initial neurogenesis but regulates axonal outgrowth in a concentration-dependent way; low concentrations of bFGF enhance axonal outgrowth, whereas high concentrations inhibit this process. These results strengthen the notion that activin and bFGF are important regulators of neurogenesis in the mammalian embryo.
小鼠P19胚胎癌细胞可分化为各种胚层衍生物。在P19 - EC细胞聚集体中添加视黄酸(RA)会导致受体蛋白酪氨酸磷酸酶α(RPTPα)的短暂激活。随后将这些聚集体重新接种会导致神经元分化。表达组成型活性RPTPα的P19 - EC细胞(P19 - RPTPα)在单层培养中经RA处理后显示出广泛的神经元分化。因此,P19 - RPTPα细胞为研究神经元分化提供了一个合适的体外模型。我们使用P19 - RPTPα细胞来研究激活素和碱性成纤维细胞生长因子(bFGF)对神经发生的影响。我们发现P19 - RPTPα细胞表达I型和II型激活素受体的mRNA。添加RA会导致IIA型受体表达上调。通过交联试验在RA处理前后均可检测到I型和II型受体复合物。通过用激活素反应性报告构建体进行瞬时转染试验确定受体复合物具有功能。未分化以及分化的P19 - RPTPα细胞也表达FGF受体(FGFRs)FGFR - 1和FGFR - 2,但不表达FGFR - 3和FGFR - 4。它们的功能通过bFGF诱导的丝裂原活化蛋白激酶磷酸化得以证实。激活素和bFGF对RA诱导的神经元分化似乎发挥不同作用。尽管激活素不可逆地将分化命运改变为非神经元方向,但bFGF不影响初始神经发生,而是以浓度依赖的方式调节轴突生长;低浓度的bFGF促进轴突生长,而高浓度则抑制这一过程。这些结果强化了激活素和bFGF是哺乳动物胚胎神经发生重要调节因子的观点。