Suppr超能文献

Reversal of P-glycoprotein-associated multidrug resistance by ivermectin.

作者信息

Pouliot J F, L'Heureux F, Liu Z, Prichard R K, Georges E

机构信息

Institute of Parasitology of McGill University, Quebec, Canada.

出版信息

Biochem Pharmacol. 1997 Jan 10;53(1):17-25. doi: 10.1016/s0006-2952(96)00656-9.

Abstract

P-Glycoprotein (P-gp) causes a multidrug resistance (MDR) phenotype in tumour cells. In some cancers, the expression of P-gp has been correlated with low clinical response to chemotherapy and survival of patients. Previous studies have shown that certain lipophilic drugs bind to P-gp and reverse the MDR phenotype of tumour cells. In this study, we extend that list of compounds and present evidence for the capacity of a potent and clinically safe anthelmintic, ivermectin (IVM), as an MDR-reversing drug. Using a highly drug-resistant human cell line, we compared IVM with other MDR-reversing agents and showed that IVM is 4- and 9-fold more potent than cyclosporin A and verapamil, respectively. The capacity of IVM to inhibit iodoaryl-azidoprazosin photolabeling of P-gp is consistent with direct binding to P-gp. Studies showed that [3H]IVM binding to membranes from resistant cells is specific and saturable with KD and Bmax values of 10.6 nM and 19.8 pmol/mg, respectively. However, while cyclosporin A or vinblastine inhibited [3H]IVM binding to membranes from drug-resistant but not drug-sensitive cells, neither verapamil nor colchicine had any effect. Furthermore, both IVM and cyclosporin A and, to a lesser extent, verapamil also inhibited [3H]vinblastine binding to membranes from drug-resistant cells. Drug transport studies showed that [3H]IVM is a substrate for the P-gp drug efflux pump. However, it was transported less efficiently by P-gp than [3H]vinblastine. Moreover, only cyclosporin A was effective in potentiating the accumulation of [3H]IVM in drug-resistant cells. Taken together, the high efficiency of MDR reversal by IVM combined with its low toxicity are consistent with the properties of an ideal MDR-reversing agent.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验