Vince J W, Reithmeier R A
MRC Group in Membrane Biology, Department of Medicine, Toronto, Ontario, Canada.
Cell Mol Biol (Noisy-le-grand). 1996 Nov;42(7):1041-51.
The N-glycosylated membrane domain of band 3 consists of multiple membrane spanning segments that come together to form a regulated transmembrane passage for the exchange of anions. In this article we review the structural features of the membrane domain of band 3. Electron microscopic analysis of 2-dimensional crystals have confirmed the dimeric nature of the protein and has provided the overall shape of the membrane domain. The high degree of sequence identity in the transmembrane segments, and the finding that these segments are helical and remain tightly associated after proteolytic cleavage of the connecting loops, suggests that the interactions between transmembrane helices are specific and form the foundation for the structure of the membrane domain. N-glycosylation of band 3 is not essential for the transport function of the protein. N-glycosylation mutagenesis indicates that band 3 can be glycosylated on multiple loops and spans the membrane 12 times. Red cell diseases (HEMPAS and SAO) that affect the band 3 oligosaccharide structure and other properties of the protein are the subject of continued studies.
带3蛋白的N - 糖基化膜结构域由多个跨膜片段组成,这些片段聚集在一起形成一个用于阴离子交换的调控跨膜通道。在本文中,我们综述了带3蛋白膜结构域的结构特征。二维晶体的电子显微镜分析证实了该蛋白的二聚体性质,并提供了膜结构域的整体形状。跨膜片段中高度的序列同一性,以及这些片段呈螺旋状且在连接环被蛋白酶切割后仍紧密相连的发现,表明跨膜螺旋之间的相互作用是特异性的,并构成了膜结构域结构的基础。带3蛋白的N - 糖基化对于该蛋白的转运功能并非必不可少。N - 糖基化诱变表明,带3蛋白可在多个环上进行糖基化,且跨膜12次。影响带3蛋白寡糖结构及其他特性的红细胞疾病(遗传性红细胞生成异常性贫血和先天性球形红细胞增多症)仍是持续研究的对象。