Suppr超能文献

确定性惩罚项能否模拟突触权重噪声对网络容错性的影响?

Can deterministic penalty terms model the effects of synaptic weight noise on network fault-tolerance?

作者信息

Edwards P J, Murray A F

机构信息

Department of Electrical Engineering, University of Edinburgh, Scotland, UK.

出版信息

Int J Neural Syst. 1995 Dec;6(4):401-16. doi: 10.1142/s0129065795000263.

Abstract

This paper investigates fault tolerance in feedforward neural networks, for a realistic fault model based on analog hardware. In our previous work with synaptic weight noise we showed significant fault tolerance enhancement over standard training algorithms. We proposed that when introduced into training, weight noise distributes the network computation more evenly across the weights and thus enhances fault tolerance. Here we compare those results with an approximation to the mechanisms induced by stochastic weight noise, incorporated into training deterministically via penalty terms. The penalty terms are an approximation to weight saliency and therefore, in addition, we assess a number of other weight saliency measures and perform comparison experiments. The results show that the first term approximation is an incomplete model of weight noise in terms of fault tolerance. Also the error Hessian is shown to be the most accurate measure of weight saliency.

摘要

本文研究基于模拟硬件的现实故障模型下前馈神经网络的容错能力。在我们之前关于突触权重噪声的工作中,我们展示了相较于标准训练算法,容错能力有显著增强。我们提出,当引入训练时,权重噪声会使网络计算在各个权重上分布得更加均匀,从而增强容错能力。在此,我们将这些结果与通过惩罚项确定性地纳入训练的随机权重噪声所引发机制的近似情况进行比较。惩罚项是权重显著性的一种近似,因此,此外,我们评估了许多其他权重显著性度量并进行了比较实验。结果表明,就容错能力而言,首项近似是权重噪声的一个不完整模型。同时,误差海森矩阵被证明是权重显著性最准确的度量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验