Suppr超能文献

Differential stimulation of Na+ pump activity by insulin and nitric oxide in rabbit aorta.

作者信息

Gupta S, Phipps K, Ruderman N B

机构信息

Diabetes and Metabolism Unit, Boston University School of Medicine, Massachusetts 02118, USA.

出版信息

Am J Physiol. 1996 Apr;270(4 Pt 2):H1287-93. doi: 10.1152/ajpheart.1996.270.4.H1287.

Abstract

The effect of insulin on Na+ pump activity, measured as ouabain-sensitive (OS) 86Rb uptake, was studied in the rabbit aorta. In the absence of insulin, incubation of endothelium-intact rings for 3 h in a medium containing a high concentration of glucose (44 mM) decreased OS 86Rb uptake by 42% compared with that observed at 5.5 mM glucose. Addition of insulin (0.1-10 microU/ml) increased OS86 86Rb uptake at both glycose concentrations and eliminated the differences between the groups. Insulin also increased OS 86Rb uptake in endothelium-intact and -denuded (ED) rings in the presence of the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine. Removal of the endothelium before the incubations did not diminish the insulin-induced increase in OS 86Rb uptake, which was concentration dependent. The NO donor sodium nitroprusside increased OS 86Rb uptake in ED rings, and its effect and that of insulin were additive. Phorbol 12,13-dibutyrate, a direct activator of protein kinase C (PKC), also increased OS 86Rb uptake in ED rings; however, its effect and that of insulin were not additive. The PKC inhibitor bisindolylmaleimide totally inhibited insulin-induced, but not sodium nitroprusside-induced, increases in OS 86Rb uptake. The results suggest that insulin activates the Na+ pump in the aorta and reverses the inhibition of the pump caused by hyperglycemia. This effect of insulin can occur at physiological concentrations, is independent of endothelium-derived NO, and is presumably mediated by an increase in PKC activity, In contrast, activation of the Na+ pump by NO appears to be independent of PKC.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验