Suppr超能文献

MDR1/P-glycoprotein function. I. Effect of hypotonicity and inhibitors on rhodamine 123 exclusion.

作者信息

Weaver J L, McKinney L, Schoenlein P V, Goldenberg S, Gottesman M M, Aszalos A

机构信息

Division of Research and Testing, Food and Drug Administration, Laurel, Maryland 20708, USA.

出版信息

Am J Physiol. 1996 May;270(5 Pt 1):C1447-52. doi: 10.1152/ajpcell.1996.270.5.C1447.

Abstract

The MDR1 protein (P-glycoprotein) is a membrane ATPase whose expression results in resistance to several anti-tumor drugs. It has been proposed that the MDR1 protein, in addition to its pumplike properties, can function as (Gill et al. Cell 71: 23-32, 1992; Altenberg et al. Cancer Res. 54:618-622, 1994) or mediate the activity of (Hardy et al. EMBO J. 14: 68-75, 1995) a hypotonic stress-induced Cl- current. In addition, one study found that drug transport and Cl- channel-associated functions of MRD1 were separable and mutually exclusive and that, when cells were swelled, the MDR1 protein could not transport substrate. This hypothesis was tested in four pairs of isogenic cell lines with MDR1 transfectants expression 8,000-55,000 MDR1 antibody binding sites per cell. Cytoplasmic exclusion of rhodamine 123 was used as an indicator of MDR1 function to measure the effect of hypotonic stress, MDR1 inhibitors, and Cl- channel blockers on MRD1 transport function. It was found that MDR1 activity and its inhibition by cyclosporine A or flufenamic acid were unaffected by hypotonicity alone or in combination with Cl- channel blockers.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验