Suppr超能文献

Double knockout of the MRP gene leads to increased drug sensitivity in vitro.

作者信息

Lorico A, Rappa G, Flavell R A, Sartorelli A C

机构信息

Department of Pharmacology and Developmental Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

出版信息

Cancer Res. 1996 Dec 1;56(23):5351-5.

PMID:8968083
Abstract

Overexpression of the multidrug resistance-associated protein (MRP) gene has been implicated in the resistance of tumor cell lines to a wide array of chemotherapeutic agents, but its normal physiological function(s) remains unknown. We have compared the sensitivity to chemotherapeutic drugs and toxins of wild-type W9.5 embryonic stem cells (ES) and of single and double MRP gene knockout cells derived therefrom. MRP expression was totally abrogated in the double knockout cell line and partially abrogated in the single knockout cell line. Reverse transcription-PCR analyses demonstrated that the MDR1, MDR2, and MDR3 genes were not expressed in either wild-type or MRP knock-out cells. The cytotoxic activities of etoposide, teniposide, vincristine, doxorubicin, daunorubicin, and sodium arsenite were significantly greater in double knockout cells than in parental wild-type ES cells; single knockout ES cells displayed an intermediate level of sensitivity. In contrast, no difference in sensitivity to colchicine and 1-beta-D-arabinofuranosylcytosine existed between the cell lines. Etoposide accumulation in double knockout ES cells was 2-fold higher than in wild-type ES cells. These findings indicate that baseline MRP expression has the capacity to exert a protective role against the toxicity of multiple chemotherapeutic agents and natural toxins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验