Suppr超能文献

鉴定一种在淋巴细胞上表达的新型跨膜信号素。

Identification of a novel transmembrane semaphorin expressed on lymphocytes.

作者信息

Furuyama T, Inagaki S, Kosugi A, Noda S, Saitoh S, Ogata M, Iwahashi Y, Miyazaki N, Hamaoka T, Tohyama M

机构信息

Department of Anatomy and Neuroscience, Osaka University Medical School, 2-2 Yamadaoka, Suita-shi, Osaka 565, Japan.

出版信息

J Biol Chem. 1996 Dec 27;271(52):33376-81. doi: 10.1074/jbc.271.52.33376.

Abstract

Semaphorin (also known as collapsin) members are thought to be involved in axon guidance during neural network formation. Here, we report the isolation of a novel member, mouse semaphorin G (M-sema G), which encodes a semaphorin domain followed by a single putative immunoglobulin-like domain, a transmembrane domain, and a cytoplasmic domain. M-sema G is most closely related to M-sema F, which we previously reported, and semB and semC. These four members appear to constitute a transmembrane type subfamily in mouse semaphorins. In contrast to the predominant expression of M-sema F mRNAs in the nervous tissues, M-sema G mRNAs are strongly expressed in lymphoid tissues, especially in the thymus, as well as in the nervous tissues. The mRNAs are also detected in various cell lines from hematopoietic cells. By generating specific antibodies, we confirmed the strong expression of M-Sema G proteins on the surface of lymphocytes. These results provide the first evidence that semaphorin is expressed on lymphocytes and suggest that semaphorins may play an important role in the immune system, as well as in the nervous system.

摘要

信号素(也称为塌陷蛋白)成员被认为在神经网络形成过程中参与轴突导向。在此,我们报告了一种新型成员——小鼠信号素G(M-sema G)的分离,它编码一个信号素结构域,其后跟着一个单一的假定免疫球蛋白样结构域、一个跨膜结构域和一个细胞质结构域。M-sema G与我们之前报道的M-sema F以及信号素B(semB)和信号素C(semC)关系最为密切。这四个成员似乎在小鼠信号素中构成一个跨膜型亚家族。与M-sema F mRNA在神经组织中的主要表达不同,M-sema G mRNA在淋巴组织中强烈表达,尤其是在胸腺中,在神经组织中也有表达。在来自造血细胞的各种细胞系中也检测到了这些mRNA。通过产生特异性抗体,我们证实了M-Sema G蛋白在淋巴细胞表面的强烈表达。这些结果提供了信号素在淋巴细胞上表达的首个证据,并表明信号素可能在免疫系统以及神经系统中发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验