Suppr超能文献

口腔鳞状细胞癌浸润前沿细胞增殖的原位评估。

In situ assessment of cell proliferation at the invasive front of oral squamous cell carcinomas.

作者信息

Piffkó J, Bánkfalvi A, Ofner D, Kusch F, Böcker W, Joos U, Schmid K W

机构信息

Department of Maxillofacial Surgery, University of Münster, Germany.

出版信息

Virchows Arch. 1996 Nov;429(4-5):229-34. doi: 10.1007/BF00198338.

Abstract

In oral squamous cell carcinoma (OSCC) the histopathological malignancy grading of the invasive front has been found to offer the most reliable prognostic parameter. In the present study we compared such tumour front grading of 100 OSCCs with the in situ growth fraction demonstrated by MIB1 immunostaining following wet autoclave antigen retrieval. MIB1 labelling indices (LIs) were estimated both at the invasive front and in the central parts of OSCCs using two different evaluation methods (overall and random counting) to investigate whether MIB1 LIs represent a possible biological background for the tumour front grading. Statistically highly significantly increased MIB1 LIs were found at the invasive tumour fronts with both counting methods compared with the centres of the same tumours. For LI estimation the classic overall counting procedure proved to be superior. However, in contrast to tumour front grading, MIB1 LIs revealed no correlation with the clinical outcome of the patients concerned. Our results demonstrate that the invasive tumour front of an OSCC is composed of (a) tumour subpopulation(s) with higher proliferative activity. However, determination of the proliferative activity by MIB1 of this tumour area offers no prognostic information.

摘要

在口腔鳞状细胞癌(OSCC)中,侵袭前沿的组织病理学恶性分级已被证明是最可靠的预后参数。在本研究中,我们将100例OSCC的肿瘤前沿分级与湿热高压抗原修复后MIB1免疫染色显示的原位生长分数进行了比较。使用两种不同的评估方法(整体计数和随机计数)在OSCC的侵袭前沿和中心部位估计MIB1标记指数(LIs),以研究MIB1 LIs是否代表肿瘤前沿分级的可能生物学背景。与同一肿瘤的中心相比,两种计数方法均显示侵袭性肿瘤前沿的MIB1 LIs在统计学上显著升高。对于LI估计,经典的整体计数程序被证明更具优势。然而,与肿瘤前沿分级不同,MIB1 LIs与相关患者的临床结局无相关性。我们的结果表明,OSCC的侵袭性肿瘤前沿由具有较高增殖活性的肿瘤亚群组成。然而,通过MIB1测定该肿瘤区域的增殖活性并不能提供预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验