Ju H, Dixon I M
Molecular Cardiology Laboratory, St. Boniface General Hospital Research Centre, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
Mol Cell Biochem. 1996 Oct-Nov;163-164:231-7. doi: 10.1007/BF00408663.
Recent studies suggest that angiotensin II (angiotensin) may be involved in the regulation of metabolism of the cardiac extracellular matrix (ECM). Two major components of ECM are collagen types I and III which play an important role in maintaining the structure and function of the heart. Although the cellular metabolism of collagen is very complex (especially at the posttranslational level), we chose to address events that occur relatively early in the synthesis of cardiac collagen molecules. To gain an understanding of the role of angiotensin (12, 24, and 48 micrograms/kg/h) on adult heart and cultured neonatal cardiac fibroblasts. The steady-state mRNA abundance of collagen type I and III was monitored using Northern blot analysis in both left and right ventricular samples at day 3 of angiotensin infusion and in cultured cardiac fibroblasts stimulated with angiotensin. In all mRNA abundance studies, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signal was used to normalize the data for possible differences in loading and/or transfer of total RNA. Both collagen types I/GAPDH and III/GAPDH mRNA signal ratios were increased significantly in left ventricle in all dose regimens used for angiotensin infusion. Only the collagen type I/GAPDH mRNA signal ratio was increased in right ventricle with angiotensin infusion. Angiotensin (10(-7)-10(-5) M) had no effect on the steady-state mRNA abundance of collagen genes in cultured neonatal cardiac fibroblasts after 24 h treatment in serum-free conditions. Our results confirm that infusion of angiotensin may upregulate steady-state collagen gene mRNA abundance in the heart. Angiotensin had no observable effect on collagen mRNA abundance in neonatal fibroblast culture. An explanation for the current results may be that angiotensin causes the release of undefined factors from cardiac myocytes, and that these secondary factors may be involved in either the activation of collagen gene transcription or in alteration of stability of collagen mRNA transcripts via a paracrine mechanism. Although our results indicate hemodynamic loading may potentiate the action of angiotensin, this scenario is unlikely as collagen type I gene expression was increased in the normotensive right ventricle.
最近的研究表明,血管紧张素II(血管紧张素)可能参与心脏细胞外基质(ECM)代谢的调节。ECM的两个主要成分是I型和III型胶原蛋白,它们在维持心脏的结构和功能方面发挥着重要作用。尽管胶原蛋白的细胞代谢非常复杂(尤其是在翻译后水平),但我们选择研究心脏胶原蛋白分子合成过程中相对早期发生的事件。为了了解血管紧张素(12、24和48微克/千克/小时)对成年心脏和培养的新生心脏成纤维细胞的作用。在血管紧张素输注第3天,使用Northern印迹分析监测左、右心室样本中I型和III型胶原蛋白的稳态mRNA丰度,并在血管紧张素刺激的培养心脏成纤维细胞中进行监测。在所有mRNA丰度研究中,甘油醛-3-磷酸脱氢酶(GAPDH)信号用于标准化数据,以校正总RNA加载和/或转移可能存在的差异。在用于血管紧张素输注的所有剂量方案中,左心室中I型/ GAPDH和III型/ GAPDH mRNA信号比率均显著增加。血管紧张素输注时,右心室中仅I型/ GAPDH mRNA信号比率增加。在无血清条件下处理24小时后,血管紧张素(10^-7 - 10^-5 M)对培养的新生心脏成纤维细胞中胶原蛋白基因的稳态mRNA丰度没有影响。我们的结果证实,血管紧张素输注可能上调心脏中胶原蛋白基因的稳态mRNA丰度。血管紧张素对新生成纤维细胞培养中的胶原蛋白mRNA丰度没有明显影响。对当前结果的一种解释可能是,血管紧张素导致心肌细胞释放未定义的因子,并且这些次要因子可能通过旁分泌机制参与胶原蛋白基因转录的激活或胶原蛋白mRNA转录本稳定性的改变。尽管我们的结果表明血流动力学负荷可能增强血管紧张素的作用,但这种情况不太可能发生,因为在血压正常的右心室中I型胶原蛋白基因表达增加。