Suppr超能文献

Skeletal muscle contraction modulates carbonic anhydrase phenotype in adult mouse dorsal root ganglion neurons.

作者信息

Mayeux V, Valmier J

机构信息

Laboratoire de Médecine Expérimentale, INSERM U 249, CNRS UPR 9008, Montpellier, France.

出版信息

Brain Res. 1995 Oct 2;694(1-2):191-9. doi: 10.1016/0006-8993(95)00698-p.

Abstract

Recently carbonic anhydrase (CA) activity was demonstrated in adult mammalian proprioceptive neurons of the lumbar dorsal root ganglion (DRG). To assess if neuron-target interactions govern the neuronal CA phenotype, we examined how various experimental procedures which modify the interactions of these neurons with their central and peripheral targets, affect mouse L5 lumbar DRG CA activity. In normal mice and under central disconnection, carbonic anhydrase activity was detected in 30% of neurons. One day after sciatic nerve transaction the percentage of CA-positive neurons decreased to around 50% of that in controls, although both the total number of neurons per ganglion and glial CA content were unchanged. The pattern of CA activity then remained stable until at least 30 days post-operative. All experimental procedures used to block muscle contraction, including ventral rhizotomy, tenotomy, local application to the nerve of both tetrodotoxin and lidocaine or intramuscular injection of the botulinum toxin, produced a significant decrease in neuronal CA staining. Moreover, axonal transport block by vinblastine induced a decrease in CA-positive neurons. These results show that functional neuron-muscle interactions independent of DRG-spinal Cord influences contribute to the regulation of CA activity in lumbar DRG neurons. This modulation could be under the control of unidentified activity-dependent molecular mechanism involving stimuli through the skeletal muscle contraction, inducing in turn, the synthesis of a CA-regulating factor(s) retrogradely transported to the neuronal cell body and/or nuclei.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验