Suppr超能文献

用于基准剂量估计的连续数据的量子化。

Quantalization of continuous data for benchmark dose estimation.

作者信息

Gaylor D W

机构信息

National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, 72079, USA.

出版信息

Regul Toxicol Pharmacol. 1996 Dec;24(3):246-50. doi: 10.1006/rtph.1996.0137.

Abstract

Benchmark doses corresponding to low levels of noncancer disease risk have been proposed to replace the no-observed-adverse-effect level for establishing allowable daily intakes or reference doses. For quantal data each animal is classified with or without a disease. The proportion of animals with an adverse effect (risk) is observed as a function of dose of a toxic substance. The calculation of a benchmark dose is relatively straightforward. For continuous data a somewhat more complicated designation of risk is required. Because of the more direct procedures with quantal data, consideration could be given to converting continuous data to quantal data before estimating benchmark doses. The purpose of this paper is to compare the precision of the two approaches (use of continuous or quantalized data) for a number of sublinear dose-response curves ranging from low to high probabilities of risk at the highest dose. In these studies, five animals per dose were generally satisfactory to estimate the benchmark dose for continuous data, whereas the corresponding quantalized data generally do not perform as well even with 10 to 20 animals per dose. For quantalized data, the lower 95% confidence limits on the estimates of the benchmark dose were generally a factor of 3 to 4 below the true benchmark dose, whereas the confidence limits using the continuous data were generally within a factor of 2 of the true benchmark dose. Although the use of quantalized data for the estimation of risk is more direct, estimates of benchmark doses using the continuous data were more precise. Based on this study, converting continuous data to quantal data is not recommended.

摘要

已提出对应于低水平非癌症疾病风险的基准剂量,以取代未观察到不良反应水平,用于确定每日允许摄入量或参考剂量。对于定量数据,每只动物按是否患有疾病进行分类。观察到出现不良反应(风险)的动物比例是有毒物质剂量的函数。基准剂量的计算相对简单。对于连续数据,则需要对风险进行更为复杂的界定。由于定量数据的程序更为直接,因此在估计基准剂量之前,可以考虑将连续数据转换为定量数据。本文的目的是比较两种方法(使用连续数据或量化数据)对于一些从低到高剂量风险概率的亚线性剂量反应曲线的精度。在这些研究中,对于连续数据,每剂量五只动物通常足以估计基准剂量,而相应的量化数据即使每剂量有10至20只动物,通常表现也不佳。对于量化数据,基准剂量估计值的较低95%置信限通常比真实基准剂量低3至4倍,而使用连续数据的置信限通常在真实基准剂量的2倍以内。尽管使用量化数据估计风险更为直接,但使用连续数据估计基准剂量更为精确。基于这项研究,不建议将连续数据转换为定量数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验