Biessen E A, Vietsch H, van Berkel T J
Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.
Arterioscler Thromb Vasc Biol. 1996 Dec;16(12):1552-8. doi: 10.1161/01.atv.16.12.1552.
We have previously developed triantennary galactosides [TG(4A)C and TG(20A)C] that lower cholesterol levels by inducing liver uptake of lipoproteins via galactose-recognizing hepatic receptors. In this study, we have investigated whether this strategy could also be applied to reduce elevated serum levels of the atherogenic lipoprotein(a) [Lp(a)]. Both TG(4A)C and TG(20A)C could be incorporated into Lp(a). Incorporation of these glycolipids induced a rapid clearance of Lp(a). Concomitantly, the hepatic uptake of 125I-Lp(a) was enhanced from 4 +/- 1% to 80 +/- 4% of the injected dose for TG(4A)C (P < .0001) and to 17 +/- 4% of the injected dose for TG(20A)C (P < .006). TG(4A)C was apparently more effective in accelerating the serum decay of 125I-Lp(a), which may be caused by the higher hydrophobicity of this glycolipid relative to TG(20A)C. The TG(4A)C- and TG(20A)C-induced stimulation of the serum decay and liver uptake of 125I-Lp(a) could be significantly inhibited (> 85%) by preinjection of N-acetyl-galactosamine (150 mg), indicating that galactose-recognizing receptors are involved in the liver uptake of the glycolipid/Lp(a) complexes. The TG(4A)C-induced liver uptake of 125I-Lp(a) could be ascribed mainly to Kupffer cells (76 +/- 7%), whereas the parenchymal liver cell was the major site for liver uptake of TG(20A)C-laden 125I-Lp(a) (55 +/- 12%). In conclusion, both TG(4A)C and TG(20A)C stimulate the catabolism of 125I-Lp(a) by enhancing hepatic uptake. Because endocytosis of the substrate via galactose-recognizing receptors on Kupffer and parenchymal liver cells is followed by lysosomal degradation, we anticipate that both approaches for Lp(a) targeting may prove valuable as therapeutic modalities for lowering atherogenic levels of Lp(a).
我们之前已研发出三触角半乳糖苷[TG(4A)C和TG(20A)C],其可通过半乳糖识别性肝受体诱导肝脏摄取脂蛋白,从而降低胆固醇水平。在本研究中,我们调查了该策略是否也可用于降低致动脉粥样硬化性脂蛋白(a)[Lp(a)]升高的血清水平。TG(4A)C和TG(20A)C均可掺入Lp(a)中。这些糖脂的掺入诱导了Lp(a)的快速清除。与此同时,125I-Lp(a)的肝脏摄取从注射剂量的4±1%增加到TG(4A)C的80±4%(P<.0001),以及TG(20A)C的17±4%(P<.006)。TG(4A)C在加速125I-Lp(a)的血清衰减方面显然更有效,这可能是由于该糖脂相对于TG(20A)C具有更高的疏水性。预先注射N-乙酰半乳糖胺(150mg)可显著抑制(>85%)TG(4A)C和TG(20A)C诱导的125I-Lp(a)血清衰减和肝脏摄取,表明半乳糖识别性受体参与了糖脂/Lp(a)复合物的肝脏摄取。TG(4A)C诱导的125I-Lp(a)肝脏摄取主要归因于库普弗细胞(76±7%),而实质肝细胞是摄取载有TG(20A)C的125I-Lp(a)的主要肝脏部位(55±12%)。总之,TG(4A)C和TG(20A)C均通过增强肝脏摄取来刺激125I-Lp(a)的分解代谢。由于底物通过库普弗细胞和实质肝细胞上的半乳糖识别性受体进行内吞作用后会发生溶酶体降解,我们预计这两种靶向Lp(a)的方法可能被证明是降低致动脉粥样硬化性Lp(a)水平的有价值的治疗方式。