Suppr超能文献

一项调查纵向随访的事件发生时间分析:时间尺度的选择

Time-to-event analysis of longitudinal follow-up of a survey: choice of the time-scale.

作者信息

Korn E L, Graubard B I, Midthune D

机构信息

Biometric Research Branch, National Cancer Institute, Bethesda, MD 20892, USA.

出版信息

Am J Epidemiol. 1997 Jan 1;145(1):72-80. doi: 10.1093/oxfordjournals.aje.a009034.

Abstract

Following individuals sampled in a large-scale health survey for the development of diseases and/or death offers the opportunity to assess the prognostic significance of various risk factors. The proportional hazards regression model, which allows for the control of covariates, is frequently used for the analysis of such data. The authors discuss the appropriate time-scale for such regression models, and they recommend that age rather than time since the baseline survey (time-on-study) be used. Additionally, with age as the time-scale, control for calendar-period and/or birth cohort effects can be achieved by stratifying the model on birth cohort. Because, as discussed by the authors, many published analyses have used regression models with time-on-study as the time-scale, it is important to assess the magnitude of the error incurred from this type of incorrect modeling. The authors provide simple conditions for when incorrect use of time-on-study as the time-scale will nevertheless yield approximately unbiased proportional hazards regression coefficients. Examples are given using data from the first National Health and Nutrition Examination Survey (NHANES I) Epidemiologic Followup Study. Additional issues concerning the analysis of longitudinal follow-up of survey data are briefly discussed.

摘要

在一项针对疾病发展和/或死亡的大规模健康调查中对个体进行抽样,为评估各种风险因素的预后意义提供了机会。允许控制协变量的比例风险回归模型经常用于此类数据分析。作者讨论了此类回归模型的合适时间尺度,并建议使用年龄而非自基线调查以来的时间(研究时间)。此外,以年龄为时间尺度,可以通过按出生队列对模型进行分层来控制日历期和/或出生队列效应。正如作者所讨论的,许多已发表的分析使用以研究时间为时间尺度的回归模型,因此评估这种错误建模所产生误差的大小很重要。作者提供了简单的条件,说明在何种情况下错误地使用研究时间作为时间尺度仍会产生近似无偏的比例风险回归系数。使用来自第一次全国健康和营养检查调查(NHANES I)流行病学随访研究的数据给出了示例。还简要讨论了与调查数据纵向随访分析相关的其他问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验