Gröhn O, Kauppinen R
NMR Research Group, A.I. Virtanen Institute, University of Kuopio, Finland.
Cell Calcium. 1996 Dec;20(6):509-14. doi: 10.1016/s0143-4160(96)90093-7.
Nuclear magnetic resonance (NMR) spectroscopy was used to quantify metabolic recovery (by 31P NMR) and neuronal damage (by 1H NMR) following aglycaemic hypoxia in superfused cortical brain slices. Slices were incubated either in the absence or presence of a cell-permeant Ca2+ chelator, 1,2-bis-(2-amino-phenoxy)ethane-N,N,N',N'-tetra-acetic acid acetoxy ester (BAPTA-AM) before exposure to hypoxia in the presence or absence of 1.2 mM Ca2+. Hypoxia in the presence of Ca2+ resulted in metabolic damage as well as time-dependent reduction of a neuronal metabolite, N-acetyl aspartate. The recovery was improved only temporarily by BAPTA under these conditions. Hypoxia in the absence of external Ca2+ did not cause any detectable signs of damage in BAPTA-loaded slices. These data show that combined inhibition of influx and intracellular chelation of Ca2+ render the brain cortex tolerable to severe energy failure.
利用核磁共振(NMR)光谱法对灌流大脑皮层切片无糖缺氧后的代谢恢复(通过31P NMR)和神经元损伤(通过1H NMR)进行定量分析。在存在或不存在1.2 mM Ca2+的情况下,将切片在不存在或存在细胞渗透性Ca2+螯合剂1,2-双-(2-氨基苯氧基)乙烷-N,N,N',N'-四乙酸乙酰氧基酯(BAPTA-AM)的条件下孵育,然后暴露于缺氧环境。在有Ca2+存在的情况下缺氧会导致代谢损伤以及神经元代谢物N-乙酰天门冬氨酸随时间的减少。在这些条件下,BAPTA仅能暂时改善恢复情况。在没有外部Ca2+的情况下缺氧不会在加载了BAPTA的切片中引起任何可检测到的损伤迹象。这些数据表明,联合抑制Ca2+内流和细胞内螯合可使大脑皮层耐受严重的能量衰竭。