Suppr超能文献

GroEL单体多肽结合结构域的伴侣活性与结构

Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.

作者信息

Zahn R, Buckle A M, Perrett S, Johnson C M, Corrales F J, Golbik R, Fersht A R

机构信息

Cambridge Centre for Protein Engineering, Department of Chemistry, University of Cambridge, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15024-9. doi: 10.1073/pnas.93.26.15024.

Abstract

The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 A resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a "minichaperone." This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.

摘要

伴侣蛋白GroEL是一种大型复合物,由14个相同的57 kDa亚基组成,其某些活性需要ATP和GroES。我们发现,对应于191至345位残基的单体多肽在无ATP时促进硫氰酸酶和亲环蛋白A的重折叠以及催化天然核糖核酸酶的解折叠方面具有十四聚体的活性。其晶体结构在2.5埃分辨率下解析,显示出一个排列有序的结构域,其折叠方式与完整的GroEL相同。我们由此分离出了变构分子伴侣复合物的活性位点,它起着“微型伴侣蛋白”的作用。这具有机制上的意义:GroEL复合物中中央腔的存在对于体外这些代表性活性并非必不可少,变构特性也是如此。变构行为在GroES和ATP结合上的功能必定是在体内调节蛋白质对其各种底物的亲和力,在体内该腔可能对于特殊功能也是必需的。

相似文献

1
Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15024-9. doi: 10.1073/pnas.93.26.15024.
2
NMR analysis of the binding of a rhodanese peptide to a minichaperone in solution.
J Mol Biol. 1999 Sep 10;292(1):181-90. doi: 10.1006/jmbi.1999.3042.
4
Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR.
J Mol Biol. 1997 Sep 5;271(5):803-18. doi: 10.1006/jmbi.1997.1192.
5
A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
J Biol Chem. 1995 Sep 1;270(35):20404-9. doi: 10.1074/jbc.270.35.20404.
6
Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):72-5. doi: 10.1016/j.bbrc.2015.08.108. Epub 2015 Aug 29.
7
In vivo activities of GroEL minichaperones.
Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9861-6. doi: 10.1073/pnas.95.17.9861.
8
Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding.
Biochem Biophys Res Commun. 2000 Jan 27;267(3):842-9. doi: 10.1006/bbrc.1999.2020.
9
From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
J Mol Biol. 2000 Dec 15;304(5):883-96. doi: 10.1006/jmbi.2000.4277.

引用本文的文献

1
Decoding chaperone complexes: Insights from NMR spectroscopy.
Biophys Rev (Melville). 2024 Dec 10;5(4):041308. doi: 10.1063/5.0233299. eCollection 2024 Dec.
2
Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly.
Nat Struct Mol Biol. 2024 Dec;31(12):1848-1858. doi: 10.1038/s41594-024-01352-0. Epub 2024 Jul 1.
4
The New Functional Hybrid Chaperone Protein ADGroEL-SacSm.
Molecules. 2023 Aug 23;28(17):6196. doi: 10.3390/molecules28176196.
5
Prediction of chaperonin GroE substrates using small structural patterns of proteins.
FEBS Open Bio. 2023 Apr;13(4):779-794. doi: 10.1002/2211-5463.13590. Epub 2023 Mar 14.
6
GroEL-A Versatile Chaperone for Engineering and a Plethora of Applications.
Biomolecules. 2022 Apr 19;12(5):607. doi: 10.3390/biom12050607.
7
Allosteric differences dictate GroEL complementation of E. coli.
FASEB J. 2022 Mar;36(3):e22198. doi: 10.1096/fj.202101708RR.
8
Multiply Charged Cation Attachment to Facilitate Mass Measurement in Negative-Mode Native Mass Spectrometry.
Anal Chem. 2022 Feb 1;94(4):2220-2226. doi: 10.1021/acs.analchem.1c04875. Epub 2022 Jan 14.

本文引用的文献

1
Detection, delineation, measurement and display of cavities in macromolecular structures.
Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178-85. doi: 10.1107/S0907444993011333.
2
Raster3D Version 2.0. A program for photorealistic molecular graphics.
Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869-73. doi: 10.1107/S0907444994006396.
3
Conformational variability in the refined structure of the chaperonin GroEL at 2.8 A resolution.
Nat Struct Biol. 1995 Dec;2(12):1083-94. doi: 10.1038/nsb1295-1083.
5
Toward a mechanism for GroEL.GroES chaperone activity: an ATPase-gated and -pulsed folding and annealing cage.
Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4509-12. doi: 10.1073/pnas.93.9.4509.
6
Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB.
Science. 1996 Feb 2;271(5249):642-5. doi: 10.1126/science.271.5249.642.
7
Protein folding in the cell: competing models of chaperonin function.
FASEB J. 1996 Jan;10(1):20-6. doi: 10.1096/fasebj.10.1.8566542.
8
The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S.
Nat Struct Biol. 1996 Feb;3(2):170-7. doi: 10.1038/nsb0296-170.
9
Refolding of barnase in the presence of GroE.
J Mol Biol. 1993 Aug 20;232(4):1197-207. doi: 10.1006/jmbi.1993.1471.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验